TRIGONOMETRY	HOW TO \ldots ?	Y 10

- Draw a diagram (if it is a 3D problem, it is often useful to go back to $2 D$ by drawing only part of the situation, like only a triangle of interest or only what you see from above. Then work from this diagram which illustrates a $2 D$ situation.)
- Write on it all the relevant information
- Give a name to the quantity you are looking for and add it to your diagram
then :

In order to you may use ...
... find a side in a right angled triangle	- All the methods that work in any triangle and - Pythagoras' s theorem - SOH CAH TOA
... find an angle in a right angled triangle	- All the methods that work in any triangle and - SOH CAH TOA and then $\sin ^{-1}$, or $\cos ^{-1}$ or $\tan ^{-1}$ the calculator gives you the result (SHIFT cos...)
... solve a problem involving bearings	- Draw a diagram - To draw a bearing from A, first draw on a compass rose centred at A. Then draw the bearing. Remember that bearings are measured from the North, turning clockwise) - Alternate angles on parallel lines are equal (Z shape) - co-interior angles - all the "right angled triangle tools."
... find an angle in a triangle (not necessarily right angled)	- the cosine rule, if you know 3 sides. - the sine rule, if you know two sides and another angle. - Angles in a triangle add up to 180°, if you know or can determine 2 angles. - Alternate angles on parallel lines are equal (Z shape) - co-interior angles
... find a side in a triangle (not necessarily right angled)	- the cosine rule, if you know 2 sides and the angle between them - the sine rule, if you know two angles and another side.

