Summary		Graphs		Y10		
0 H O	Dr I auro Holm	e-Cuizon	Ø Ħ Ø	SCECCS Darlinghu	rst 2016	BA B

STRAIGHT LINES

Recall : A relation is *linear* if and only if its equation can be written ax + by + c = 0, where a and b are not both zero.

The graph of a linear relation is a straight line.

- If the equation can be written y = k, then its graph is a *horizontal* line.
- If the equation can be written x = k, then its graph is a *vertical* line.
- If the equation can be written y = mx + b, then its graph is a straight line with gradient m and y-intercept b.

If the equation of parabola is of the form $y = a(x - h)^2 + k$ (vertex form), the x-coordinate of the vertex is the value of x that makes the bracket zero.

Let's see why:

 $y = x^2 \ge 0$ because a square must be greater than or equal to zero. Therefore, the lowest point of the parabola (the vertex) is the one for which $y = x^2 = 0$, that is x = 0. $y = -2(x - 3)^2 \le 0$ so the highest point of the parabola (the vertex) is the one for which $y = -2(x - 3)^2 = 0$, that is x - 3 = 0, that is x = 3. $y = 4(x + 2)^{2} + 1 \ge 1$ because $4(x + 2)^{2} \ge 0$. Therefore, the lowest point of the parabola (the vertex) corresponds to $4(x + 2)^{2} + 1 = 1$, that is x + 2 = 0, that is x = -2

 $y = a(x - h)^2 + k$ is the equation of a *parabola* (in vertex form).

- If the coefficient of $x^2 = a > 0$, the parabola is *concave up* (happy face)
- If the coefficient of $x^2 = a < 0$, the parabola is *concave down* (sad face)
- The vertical line x = h is an axis of symmetry for the parabola. It goes through the vertex.
- The vertex has coordinates (h, k) (h is the value of x that makes the bracket zero)
- The *x*-intercepts, if any, can be found by factorising using the difference of squares or, of course, using the quadratic formula.

- \bigcirc Example 1. Parabolas with equation in vertex form (i.e. in the form $y = a(x h)^2 + k$)
- 1) The graph of $y = 6x^2$ is a parabola concave ______ (up/down) with vertex

V(_____). The equation of its axis of symmetry is ______.

- 2) The graph of $y = 2(x-1)^2 7$ is a parabola concave ______ (up/down) with vertex
- *V*(_____, ____). The equation of its axis of symmetry is ______
- 3) The graph of $y = -2(x 5)^2 + 3$ is a parabola concave ______ (up/down) with vertex
- *V*(_____, ____). The equation of its axis of symmetry is ______.
- 4) The graph of $y = 4(x + 7)^2 9$ is a parabola concave ______ (up/down) with vertex
- *V*(_____, ____). The equation of its axis of symmetry is ______.

Parabolas with Equation in Expanded Form

In $y = ax^2 + bx + c$ (with $a \neq 0$, otherwise, we get a straight line) the highest power of x is 2 and for this reason, it is called a *quadratic equation*.

The graph of a quadratic equation is a *parabola*. (*9n all that follows, a, b and c are the coefficients in* $y = ax^2 + bx + c$)

- If the coefficient of $x^2 = a > 0$, the parabola is concave up (happy face)
- If the coefficient of $x^2 = a < 0$, the parabola is concave down (sad face)
- The vertical line $x = -\frac{b}{2a}$ is an axis of symmetry for the parabola. It goes through the vertex.
- The *x*-coordinate of the vertex is $x_V = -\frac{b}{2a}$ (and you get the *y*-coordinate of the vertex by substituting the value of *x* into $y = ax^2 + bx + c$.
- The *x*-intercepts, if any, can be found using the quadratic formula.

- 1) $y = x^2 + 4x 4 = ax^2 + bx + c$ with a = , b = and c =.
- 2) What is the equation of the axis of symmetry?
- **3)** Find the coordinates of the vertex.
- 4) Find the x and y intercepts if any.

- 5) Complete the following table of values.
- 6) Sketch the graph.

From $y = ax^2 + bx + c$ (*expanded form*) to $y = a(x - h)^2 + k$ (*vertex form*) and vice-versa:

- If you want to rewrite $y = a(x h)^2 + k$ in the form $y = ax^2 + bx + c$, just expand!
- If you want to rewrite $y = ax^2 + bx + c$ in the form $y = a(x h)^2 + k$, factorise a and then complete the square (halve the coefficient of x, square it, add and subtract the result to $y = ax^2 + bx + c$ so a perfect square appears). The vertex form makes it easy to find the vertex.

 \bigcirc Example 3. Write $y = x^2 + 4x - 4$ in vertex form and use it to find the vertex (this is the graph from the previous example).

Note: How to use your *fx*-100 AU calculator to fill in a table of values.

Say you want to fill in a table of values for $y = 2x^2 - 3x + 4$ (1) Enter your equation in the calculator and then press ENTER.

(Eg: For $y = 2x^2 - 3x + 4$, enter: 2, ALPHA \bigcirc , X, x2, -3, ALPHA, X, +4 then ENTER) A random number will appear on your screen, ignore it.

(2) Enter a value into the variable X in the calculator

- (Eg: To enter X = 5, do: 5, Shift, STO $\mathbb{R}^{\mathbb{CL}}$, X; On screen you see $5 \rightarrow X$) NB: Don't press the ALPHA key this time when you enter X.
- (3) Use the top arrow of x to go back to your expression (E.g. $2x^2 3x + 4$)
- (4) Press ENTER, so $2x^2 3x + 4$ is evaluated for the value of X you chose. (with $y = 2x^2 - 3x + 4$ and X = 5 you should get 39)

(5) Repeat with a different value of x until your table of values is filled.

 \bigcirc Example 4. Use this method to check your table of values from example 2 (with $y = x^2 + 4x - 4$).

HYPERBOLAS 🔘 Example 5. The most famous hyperbola! Let $y = \frac{1}{x}$. Complete the table of value below and then 3 sketch the graph. 2 -2 0 2 3 à -1 -2 -3 -4 $\frac{1}{2}$ $\frac{1}{4}$ 1 1 -3 -23 -1 0 1 2 х 4 2 1 y =

Asymptotes

- Vertical asymptotes correspond to values that would lead to a division by zero. Vertical asymptotes occur if y approaches $+\infty$ or $-\infty$ when x approaches such a "forbidden" value.
- Horizontal asymptotes occur if y approaches a finite value when x approaches $+\infty$ or $-\infty$.

Hyperbolas

The *reciprocal* function $y = \frac{1}{x}$ is the star of this family of functions. A graph with an equation of the form $y = \frac{a}{bx+c} + d$ or $y = \frac{ax+b}{cx+d}$ is a *hyperbola*. It has a vertical and a horizontal asymptotes and looks like one of these two graphs ("*decreasing on both sides of the vertical asymptote*" for the first one and ("*increasing on both sides of the vertical asymptote*" for the second one):

- Use the "forbidden" value (leading to division by zero) to find the vertical asymptote.
- The (finite) value which y approaches when x approaches $+\infty$ or $-\infty$ gives you the **horizontal** asymptote.
- Use the value at a point to decide between the two possible shapes.

🔘 Example 6.

1) The vertical asymptote of $y = 7 + \frac{1}{x+3}$ is ______ and its horizontal asymptote is ______.

2) The vertical asymptote of $y = -2 + \frac{1}{x-5}$ is ______ and its horizontal asymptote is ______.

3) The vertical asymptote of $y = 5 - \frac{1}{2x+4}$ is ______ and its horizontal asymptote is ______.