| Sommary | Graphs | Y10 |
| :---: | :---: | :---: | :---: |
| Dr Laure Helme-Guizon | SWEGGS Darlinghurst 2016 | |

STRRAIGHV LINES

Recall: A relation is linear if and only if its equation can be written $a x+b y+c=0$, where a and b are not both zero.

The graph of a linear relation is a straight line.

- If the equation can be written $y=k$, then its graph is a horizontal line.
- If the equation can be written $x=k$, then its graph is a vertical line.
- If the equation can be written $y=m x+b$, then its graph is a straight line with gradient m and y-intercept b.

PARABOLAS

Parabolas with equation in Vertex Form

The star of the family is $y=x^{2}$

The point V is the vertex or turning point.

$$
a=1>0
$$

parabola concave up
The vertex is $V(0,0)$
$y=-2(x-3)^{2}$
$(a=-2, h=3, k=0)$

$$
a=-2<0
$$

parabola concave down The vertex is $V(3,0)$ Solve bracket $=0$, ie, $x-3=0$
$y=4(x+2)^{2}+1$
$(a=4, h=-2, k=1)$

$$
a=4>0,
$$

parabola concave up
The vertex is $V(-2,1)$
Solve bracket $=0, i e . \chi+2=0$

If the equation of parabola is of the form $y=a(x-h)^{2}+k$ (vertex form), the x-coordinate of the vertex is the value of x that makes the bracket zero.
Let's see why:
$y=x^{2} \geq 0$ because a square must be greater than or equal to zero. Therefore, the lowest point of the parabola (the vertex) is the one for which $y=x^{2}=0$, that is $x=0$.
$y=-2(x-3)^{2} \leq 0$ so the highest point of the parabola (the vertex) is the one for which $y=-2(x-3)^{2}=0$, that is $x-3=0$, that is $x=3$.

$$
y=4(x+2)^{2}+1 \geq 1
$$

because $4(x+2)^{2} \geq 0$. Therefore, the lowest point of the parabola (the vertex)
corresponds to

$$
4(x+2)^{2}+1=1, \text { that is }
$$

$$
x+2=0, \text { that is } x=-2
$$

$y=a(x-h)^{2}+k$ is the equation of a parabola (in vertex form).

- If the coefficient of $x^{2}=a>0$, the parabola is concave up (happy face)
- If the coefficient of $x^{2}=a<0$, the parabola is concave down (sad face)
- The vertical line $x=h$ is an axis of symmetry for the parabola. It goes through the vertex.
- The vertex has coordinates (h, k) (his the value of x that makes the bracketzero)
- The x-intercepts, if any, can be found by factorising using the difference of squares or, of course, using the quadratic formula.

Example 1. Parabolas with equation in vertex form (i.e. in the form $y=a(x-h)^{2}+k$)

1) The graph of $y=6 x^{2}$ is a parabola concave \qquad (up/down) with vertex V \qquad , \qquad). The equation of its axis of symmetry is \qquad .
2) The graph of $y=2(x-1)^{2}-7$ is a parabola concave \qquad (up/down) with vertex V(__, \qquad). The equation of its axis of symmetry is \qquad .
3) The graph of $y=-2(x-5)^{2}+3$ is a parabola concave \qquad (up/down) with vertex V \qquad). The equation of its axis of symmetry is \qquad -
4) The graph of $y=4(x+7)^{2}-9$ is a parabola concave \qquad (up/down) with vertex V \qquad). The equation of its axis of symmetry is \qquad -.

Parabolas with Equation in Expanded Form

In $y=a x^{2}+b x+c$ (with $a \neq 0$, otherwise, we get a straight line) the highest power of x is 2 and for this reason, it is called a quadratic equation.
The graph of a quadratic equation is a parabola.
(In all that follows, a, b and c are the coefficients in $y=a x^{2}+b x+c$)

- If the coefficient of $x^{2}=a>0$, the parabola is concave up (happy face)
- If the coefficient of $x^{2}=a<0$, the parabola is concave down (sad face)
- The vertical line $x=-\frac{b}{2 a}$ is an axis of symmetry for the parabola. It goes through the vertex.
- The x-coordinate of the vertex is $x_{V}=-\frac{b}{2 a}$ (and you get the y-coordinate of the vertex by substituting the value of x into $y=a x^{2}+b x+c$.
- The x-intercepts, if any, can be found using the quadratic formula.

Example 2. A parabolas with equation of the form $y=a x^{2}+b x+c$
Let $y=x^{2}+4 x-4$

1) $y=x^{2}+4 x-4=a x^{2}+b x+c$ with $a=$ \qquad , $b=$ \qquad and $c=$ \qquad -
2) What is the equation of the axis of symmetry?
3) Find the coordinates of the vertex.
4) Find the x and y intercepts if any.
5) Complete the following table of values.
6) Sketch the graph.

■ From $y=a x^{2}+b x+c$ (expanded form) to $y=a(x-h)^{2}+k$ (vertex form) and vice-versa:

- If you want to rewrite $y=a(x-h)^{2}+k$ in the form $y=a x^{2}+b x+c$, just expand!
- If you want to rewrite $y=a x^{2}+b x+c$ in the form $y=a(x-h)^{2}+k$, factorise a and then complete the square (halve the coefficient of x, square it, add and subtract the result to $y=a x^{2}+b x+c$ so a perfect square appears). The vertex form makes it easy to find the vertex.

Example 3. Write $y=x^{2}+4 x-4$ in vertex form and use it to find the vertex (this is the graph from the previous example).

Note: How to use your $\boldsymbol{f x}$ - 100 AU calculator to fill in a table of values.

Say you want to fill in a table of values for $y=2 x^{2}-3 x+4$
(1) Enter your equation in the calculator and then press ENTER.
(Eg: For $y=2 x^{2}-3 x+4$, enter: 2, ALPHA $\circlearrowright \mathrm{X}, x^{2},-3$, ALPHA, X, +4 then ENTER) A random number will appear on your screen, ignore it.
(2) Enter a value into the variable X in the calculator
(Eg: To enter $X=5$, do: 5, Shift, STO ${ }^{\text {RCL }}, \mathrm{X}$; On screen you see $5 \rightarrow \mathrm{X}$)
NB: Don't press the ALDFIA key this time when you enter X.
(3) Use the top arrow of to go back to your expression (E.g. $2 x^{2}-3 x+4$)
(4) Press ENTER, so $2 x^{2}-3 x+4$ is evaluated for the value of X you chose.
(with $y=2 x^{2}-3 x+4$ and $X=5$ youshould get 39)
(5) Repeat with a different value of x until your table of values is filled.

Example 4. Use this method to check your table of values from example 2 (with $y=x^{2}+4 x-4$).

HYPERBOLAS

Example S. The most famous hyperbola!

Let $y=\frac{1}{x}$.
Complete the table of value below and then sketch the graph.

Asymptotes

An asymptote is, essentially, a line that a graph approaches arbitrarily closely.

- Vertical asymptotes correspond to values that would lead to a division by zero. Vertical asymptotes occur if y approaches $+\infty$ or $-\infty$ when x approaches such a "forbidden" value.
- Horizontal asymptotes occur if y approaches a finite value when x approaches $+\infty$ or $-\infty$.

Hyperbelas

The reciprocal function $y=\frac{1}{x}$ is the star of this family of functions. A graph with an equation of the form $y=\frac{a}{b x+c}+d$ or $y=\frac{a x+b}{c x+d}$ is a hyperbola. It has a vertical and a horizontal asymptotes and looks like one of these two graphs ("decreasing on both sides of the vertical asymptote" for the first one and ("increasing on both sides of the vertical asymptote" for the second one):

- Use the "forbidden" value (leading to division by zero) to find the vertical asymptote.
- The (finite) value which y approaches when x approaches $+\infty$ or $-\infty$ gives you the horizontal asymptote.
- Use the value at a point to decide between the two possible shapes.

Example 6.

1) The vertical asymptote of $y=7+\frac{1}{x+3}$ is \qquad and its horizontal asymptote is \qquad .
2) The vertical asymptote of $y=-2+\frac{1}{x-5}$ is \qquad and its horizontal asymptote is \qquad .
3) The vertical asymptote of $y=5-\frac{1}{2 x+4}$ is \qquad and its horizontal asymptote is \qquad .
