| Exercises | DERIVATIVE | Y11 |
| :---: | :---: | :---: |

(4) Dr Laure Helme-Guizon SCEGGS Darlinghurst 27 July 2016 (4)


- PRODUCTS AND FACTORS 这


## 1 Preliminary Work

### 1.1 Intuitive idea of limits

## Deriv. DrH Exercise 1

Read the limits from the graph of the function $f$ represented below.


1. $\lim _{x \rightarrow+\infty} f(x)=\ldots$
2. $\lim _{x \rightarrow-\infty} f(x)=\ldots$
3. $\lim _{x \rightarrow 0} f(x)=\ldots$
4. $\lim _{x \rightarrow-2^{+}} f(x)=\ldots$
5. $\lim _{x \rightarrow-2^{-}} f(x)=\ldots$
6. $\lim _{x \rightarrow-2} f(x)=\ldots$
7. $\lim _{x \rightarrow 5} f(x)=\ldots$

## Rule of thumb for Limits

Limits are what they should be, meaning you can tell right away what they are, unless one of the following inderterminate forms appears : " $\frac{0}{0} ", ~ " \frac{\infty}{\infty} "$, $" \infty-\infty$ ", " $0^{0 "}$ and " $1{ }^{\infty}$ ".
where for example " $\frac{0}{0}$ " means that the limit of the numerator is 0 and the limit of the denominator is 0 (Do not let the notation mislead you : they are NOT equal to 0 , they approach 0 ).
Interestingly enough, when there is an indeterminate form, anything could happen : maybe the limit does not exist, maybe it does but in that case it could be any number.

## Surviving indeterminate forms

In order to deal with the indeterminate forms, you will usually need to factorise then simplify the expression ... until it no longer is an indeterminate form.

## Deriv. DrH Exercise 2

1. $\lim _{x \rightarrow+\infty} x^{2}=\ldots$
2. $\lim _{x \rightarrow-\infty} x^{3}-1=\ldots$
3. $\lim _{x \rightarrow 0} \frac{1+x}{2-3 x}=\ldots$
4. $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\ldots$
5. $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=\ldots$
6. $\lim _{x \rightarrow 0} \frac{3 x-4 x^{5}}{x}=\ldots$

## Deriv. DrH Exercise 3

1. $\lim _{x \rightarrow+\infty} x^{2}+3=\ldots$
2. $\lim _{x \rightarrow+\infty} x^{2}-5 x=\ldots$
3. $\lim _{x \rightarrow-\infty} x^{2}-5 x=\ldots$

Deriv. DrH Exercise 4 Evaluate $\lim _{x \rightarrow \frac{7}{2}} \frac{4 x^{2}-49}{2 x-7}$.

Deriv. DrH Exercise 5 Evaluate $\lim _{x \rightarrow-3} \frac{x^{3}+27}{9-x^{2}}$

## Deriv. DrH Exercise 6

1. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x+1}=\ldots$
2. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\ldots$
3. $\lim _{x \rightarrow 3} \frac{x^{3}-8}{3 x-6}=\ldots$
4. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{3 x-6}=\ldots$
5. $\lim _{x \rightarrow 2.5} \frac{2 x^{2}-x-10}{2 x-5}=\ldots$

## Deriv. DrH Exercise 7

1. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x+3}=\ldots$
2. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}=\ldots$
3. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{3 x-9}=\ldots$
4. $\lim _{x \rightarrow 2} \frac{x^{3}-27}{3 x-9}=\ldots$
5. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{3 x-6}=\ldots$
6. $\lim _{x \rightarrow 2} \frac{2 x^{2}-x-6}{-2 x+4}=\ldots$

Deriv. DrH Exercise 8 Let $f(x)=-2-\frac{1}{x+5}$

1. Find the derivative of $f$
2. Sketch the graph of $f$
3. Find $\lim _{x \rightarrow+\infty} f(x)$
4. Find $\lim _{x \rightarrow-\infty} f(x)$
5. Find $\lim _{x \rightarrow-5^{+}} f(x)$
6. Find $\lim _{x \rightarrow-5^{-}} f(x)$

Deriv. DrH Exercise 9 Let $f(x)=7+\frac{1}{x-3}$

1. Find the derivative of $f$
2. Sketch the graph of $f$
3. Find $\lim _{x \rightarrow+\infty} f(x)$
4. Find $\lim _{x \rightarrow-\infty} f(x)$
5. Find $\lim _{x \rightarrow 3^{+}} f(x)$
6. Find $\lim _{x \rightarrow 3^{-}} f(x)$

## Deriv. DrH Exercise 10

Read the required values from the graph of the function $f$ represented on the right.

1. $f(1) \approx \ldots$
2. $f^{\prime}(1) \approx \ldots$
3. $f(2) \approx \ldots$
4. $f^{\prime}(2) \approx$...


### 1.2 What if there is something other than $x$ in the function?

Deriv. DrH Exercise 11 What if there is something other than $x$ in the function?
Let $f(x)=\frac{x+1}{x-1}$.
Sally says that $f\left(\frac{1}{x}\right)=-f(x)$ and Tara says that this is completely wrong. Who is right? Give reasons (I mean a mathematical reason, not «Tara is usually right» :-).

## 2 Differenciating from First Principles


DEGREE ONE EQUATIONS

## "Differenciate using First Principles" ...

... means using the definition of the derivative, i.e., the limit of the rate of change :
If the limit $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists, then the function $f$ is differentiable at $x$ and the derivative at $x$ is equal to the above limit, i.e.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

## 3 Differentiating powers

## Deriv. DrH Exercise 12

Find the derivative of the following functions.

1. $f_{1}(x)=x^{7} \sqrt{x}$.
2. $f_{2}(x)=\frac{x^{7} \sqrt{x}}{3}$.
3. $f_{3}(x)=\frac{x^{4}}{\sqrt{x}}$.

## Deriv. DrH Exercise 13

Let $f$ be the function defined for all $x$ by $f(x)=x^{4}$

1. Find the derivative of $f$.
2. Prove that the function 'looks like the square function' meaning that
a. it is decreasing for $x<0$
b. it is increasing for $x>0$
c. and it has a horizontal tangent for $x=0$.

## $\square$ Deriv. DrH Exercise 14

Let $f$ be the function 'cube root' defined for all $x>0$ by $f(x)=\sqrt[3]{x}$

1. Find the derivative of $f$ and rewrite it without indices.
2. Prove that the function 'cube root' is increasing on its domain.

## 4 Chain Rule

Deriv. DrH Exercise 15 Let $f$ be the function defined for all $x>0$ by $f(x)=(\sqrt{x})^{3}$. The goal of this exercise is to find the derivative of $f$ using different methods.

1. Find the derivative of $f$ using the formula for differentiating a power of $x$. First rewrite $f(x)=$ $x^{\alpha}$ with $\alpha=\ldots$
2. Find the derivative of $f$ using the Chain rule. First rewrite $f(x)=u^{3}$ with $u=\ldots$
3. Find the derivative of $f$ using the Chain rule. First rewrite $f(x)=\sqrt{u}$ with $u=\ldots$.

Deriv. DrH Exercise 16 Let $u$ be the function defined by $u(x)=-2 x^{2}+8 x+42$. Let $f$ be the function defined by $f(x)=\sqrt{u(x)}$.

1. Natural domain of $f$ :
a. Write $u(x)$ in a factorised form.
b. What is the natural domain of $f$ ?
2. Find the $x$-coordinate of any point where the tangent to the graph of $f$ is horizontal.

Deriv. DrH Exercise 17 Find the derivative of $f(x)=\frac{6}{(2 x+5)^{3}}$

## 5 Product rule

$\square$ Deriv. DrH Exercise 18 Let $f$ be the function defined by $f(x)=-3 x \sqrt{1-4 x}$.

1. Find the natural domain of $f$.
2. Differentiate $f$.
3. Find the point(s) where the tangent to the graph of $f$ is horizontal.

## 6 Quotient rule

## 7 Differentiability

Deriv. DrH Exercise 19 Let $f$ be the function defined by $f(x)=\left\{\begin{array}{l}(x-2)^{2} \text { if } x \leq 3 \\ 2-(x-4)^{2} \text { if } x>3\end{array}\right.$1. Sketch the graph of $f$.
2. Is $f$ continuous at $x=3$ ?
3. Is $f$ differentiable at $x=3$ ?

## 8 Tangent, Normal

Deriv. DrH Exercise 20 Is it possible to chose $p$ such that the tangent to $y=3 x^{2}+p x+7$ at the point with $x$-coordinate equal to 2 is parallel to the straight line $\ell$ with equation $5 x-y+8=0$ ?In case you were wondering, this was written using ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ (free software for beautiful documents).

## Solution of Deriv. DrH Exercise 1 .

## Solution of Deriv. DrH Exercise 2 .

## Solution of Deriv. DrH Exercise 3 .

## Solution of Deriv. DrH Exercise 4.

$\frac{4 x^{2}-49}{2 x-7}=2 x+7$ so $\lim _{x \rightarrow \frac{7}{2}} \frac{4 x^{2}-49}{2 x-7}=2 \frac{7}{2}+7=14$

## Solution of Deriv. DrH Exercise 5.

$\frac{x^{3}+27}{9-x^{2}}=-\frac{x^{2}-3 x+9}{x-3}$ so $\lim _{x \rightarrow-3} \frac{x^{3}+27}{9-x^{2}}=-\frac{(-3)^{2}-3(-3)+9}{-3-3}=-\frac{9}{2}$

## Solution of Deriv. DrH Exercise 6.

## Solution of Deriv. DrH Exercise 7.

1. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x+3}=\ldots$
2. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}=\ldots$
3. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{3 x-9}=\ldots$
4. $\lim _{x \rightarrow 2} \frac{x^{3}-27}{3 x-9}=\ldots$
5. $\frac{x^{3}-8}{3 x-6}=\frac{x^{2}+2 x+4}{3}$ so $\lim _{x \rightarrow 2} \frac{x^{3}-8}{3 x-6}=8$
6. Simplify : $\frac{2 x^{2}-x-6}{-2 x+4}=-\frac{2 x+3}{2}$ so $\lim _{x \rightarrow 2} \frac{2 x^{2}-x-6}{-2 x+4}=-\frac{7}{2}$

## Solution of Deriv. DrH Exercise 8 .

1. $f(x)=-2-\frac{1}{x+5}=-2-(x+5)^{-1}$ so its derivative is $f^{\prime}(x)=0-1 \times-1 \times(x+5)^{-2}=\frac{1}{(x+5)^{2}}$
2. Graph of $f$

3. $\lim _{x \rightarrow+\infty} f(x)=-2$
4. $\lim _{x \rightarrow-\infty} f(x)=-2$
5. As $x$ approaches -5 from the right, $f(x)$ becomes infinitely large in absolute value (and negative) so the limit is $-\infty$. $\lim _{x \rightarrow-5^{+}} f(x)=-\infty$
6. As $x$ approaches -5 from the left, $f(x)$ becomes infinitely large (and positive) so the limit is $+\infty$. $\lim _{x \rightarrow-5^{-}} f(x)=+\infty$.

## Solution of Deriv. DrH Exercise 9 .

1. $f(x)=7+\frac{1}{x-3}=7+(x-3)^{-1}$ so its derivative is $f^{\prime}(x)=0-1 \times(x-3)^{-2} \times 1=-\frac{1}{(x-3)^{2}}$
2. Graph of $f$

3. $\lim _{x \rightarrow+\infty} f(x)=7$
4. $\lim _{x \rightarrow-\infty} f(x)=7$
5. As $x$ approaches 3 from the right, $f(x)$ becomes infinitely large in absolute value (and positive) so the limit is $+\infty$. $\lim _{x \rightarrow-5^{+}} f(x)=+\infty$
6. As $x$ approaches 3 from the left, $f(x)$ becomes infinitely large (and negative) so the limit is $-\infty$. $\lim _{x \rightarrow 3^{-}} f(x)=-\infty$.

## Solution of Deriv. DrH Exercise 10.

## Solution of Deriv. DrH Exercise 11.

 $f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}+1}{\frac{1}{x}-1}=\frac{1+x}{1-x}$ (multiply the numerator and the denominator by $x$ ).Now note that $\frac{1+x}{1-x}=\frac{x+1}{-(x-1)}=-\frac{x+1}{x-1}=-f(x)$ so Sally is right.

## Solution of Deriv. DrH Exercise 12.

1. $f_{1}(x)=x^{7} \sqrt{x}=x^{7} x^{\frac{1}{2}}=x^{7+\frac{1}{2}}=x^{\frac{15}{2}}$.

Therefore, $f_{1}^{\prime}(x)=\frac{15}{2} x^{\frac{15}{2}-1}=\frac{15}{2} x^{\frac{13}{2}}=\frac{15}{2} x^{\frac{12}{2}+\frac{1}{2}}=$ $\frac{15}{2} x^{\frac{12}{2}} x^{\frac{1}{2}}=\frac{15}{2} x^{6} \sqrt{x}$.
2. $f_{2}(x)=\frac{x^{7} \sqrt{x}}{3}=\frac{1}{3} x^{7} \sqrt{x}=\frac{1}{3} f_{1}(x)$.

Therefore, $f_{2}^{\prime}(x)=\frac{1}{3} f_{1}^{\prime}(x)=\frac{1}{3} \times \frac{15}{2} x^{6} \sqrt{x}=\frac{5}{2} x^{6} \sqrt{x}$
3. $f_{3}(x)=\frac{x^{4}}{\sqrt{x}}=\frac{x^{4}}{x^{\frac{1}{2}}}=x^{4-\frac{1}{2}}=x^{\frac{7}{2}}$.

Therefore, $f_{3}^{\prime}(x)=\frac{7}{2} x^{\frac{7}{2}-1}=\frac{7}{2} x^{\frac{5}{2}}=\frac{7}{2} x^{\frac{4}{2}+\frac{1}{2}}=$ $\frac{7}{2} x^{2} x^{\frac{1}{2}}=\frac{7}{2} x^{2} \sqrt{x}$

## Solution of Deriv. DrH Exercise 13 .

Un jour....

## Solution of Deriv. DrH Exercise 14.

Un jour....

## Solution of Deriv. DrH Exercise 15.

1. $f(x)=(\sqrt{x})^{3}=x^{\frac{3}{2}}$, so $f(x)=x^{\alpha}$ with $\alpha=\frac{3}{2}$.Therefore its derivative is $f^{\prime}(x)=\frac{3}{2} x^{\frac{3}{2}-1}=\frac{3}{2} x^{\frac{1}{2}}=$ $\frac{3}{2} \sqrt{x}$
2. Find the derivative of $f$ using the Chain rule. First rewrite $f(x)=u^{3}$ with $u=\sqrt{x}$. Therefore $f^{\prime}(x)=3 u^{2} \times \frac{1}{2 \sqrt{x}}=3 \sqrt{x}^{2} \times \frac{1}{2 \sqrt{x}}=3 x \times \frac{1}{2 \sqrt{x}}=$ $\frac{3 x}{2 \sqrt{x}}=\frac{3 x \times \sqrt{x}}{2 \sqrt{x} \times \sqrt{x}}=\frac{3}{2} \sqrt{x}$
3. $f(x)=(\sqrt{x})^{3}=x^{\frac{3}{2}}=\left(x^{3}\right)^{\frac{1}{2}}=\sqrt{x^{3}}=\sqrt{u}$ with $u=$ $x^{3}$. Therefore $f^{\prime}(x)=\frac{1}{2 \sqrt{u}} \times 3 x^{2}=\frac{1}{2 \sqrt{x^{3}}} \times 3 x^{2}=$ $\frac{3 x^{2}}{2 \sqrt{x^{3}}}=\frac{3 x^{2}}{2 x^{\frac{3}{2}}}=\frac{3 x^{2} x^{-\frac{3}{2}}}{2}=\frac{3 x^{2-\frac{3}{2}}}{2}=\frac{3 x^{\frac{1}{2}}}{2}=\frac{3 \sqrt{x}}{2}=\frac{3}{2} \sqrt{x}$.

Of course, we get the same derivative each and every time.

## Solution of Deriv. DrH Exercise 16 .

1. Natural domain of $f$ :
a. $u(x)=-2(x+3)(x-7)$
b. The natural domain of $f$ is all the values of $x$ such that $u(x) \geqslant 0$. i.e. $-3 \leqslant x \leqslant 7$. (Graph $u$, using the $x$-intercepts found in part 1 ).
$f(x)=\sqrt{u(x)}$ with $u(x)=-2 x^{2}+8 x+42$ so its derivative is $f^{\prime}(x)=\frac{1}{2 \sqrt{u}} \times(-4 x+8)=\frac{-2 x+4}{\sqrt{-2 x^{2}+8 x+42}}$. The $x$-coordinate of any point where the tangent to the graph of $f$ is horizontal is a solution of $f^{\prime}(x)=0$ i.e. $x=2$.
$f(x)=\sqrt{-2 x^{2}+8 x+42}$
Line
$g: y=7.07$
Point

- $A=(2,7.07)$



## 2. Solution of Deriv. DrH Exercise 17.

$\frac{d}{d x}\left(\frac{6}{(2 x+5)^{3}}\right)=6 \frac{d}{d x}\left(\frac{1}{(2 x+5)^{3}}\right)=6 \frac{d}{d x}\left((2 x+5)^{-3}\right)=$ $6 \frac{d}{d u}\left(u^{-3}\right) \frac{d}{d x}(2 x+5)$ with $u=2 x+5$.
$f^{\prime}(x)=6 \times-3 u^{-4} \times 2=-36(2 x+5)^{-4}=-\frac{36}{(2 x+5)^{4}}$.

## Solution of Deriv. DrH Exercise 18 .

1. Natural domain of $f$ :
2. $f^{\prime}(x)=\frac{d}{d x}(-3 x \sqrt{1-4 x})=\frac{18 x-3}{\sqrt{-4 x+1}}$
3. The $x$-coordinate of any point where the tangent to the graph of $f$ is horizontal is a solution of $f^{\prime}(x)=0 . f^{\prime}(x)=0 \Longleftrightarrow 18 x-3=0 \Longleftrightarrow x=\frac{1}{6}$. The $y$-coordinate of the point is $y=f\left(\frac{1}{6}\right)=-3 \times$ $\frac{1}{6} \sqrt{1-4 \times \frac{1}{6}}=-\frac{1}{2} \sqrt{\frac{1}{3}}=-\frac{\sqrt{3}}{6}$
ANSWER : The tangent to the the graph of $f$ is horizontal at the point with coordinates $\left(\frac{1}{6},-\frac{\sqrt{3}}{6}\right)$


Solution of Deriv. DrH Exercise 19 .
1.

2. $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1$. They are equal so $f$ is continuous at $x=3$. This is what we expected from the diagram as there is no break in the graph.
3. Strategy : Find the derivative on both sides of 3 and take their limit.
$\lim _{x \rightarrow 3^{-}} f^{\prime}(x)=2$ and $\lim _{x \rightarrow 3^{+}} f^{\prime}(x)=2$. They are equal so $f$ is differentiable at $x=3$ with $f^{\prime}(3)=2$. This is what we expected from the diagram as there is no break and no sharp corner in the graph.

## Solution of Deriv. DrH Exercise 20.

$5 x-y+8=0 \Longleftrightarrow y=5 x+8$ so the gradient of $\ell$ is 5 . $\frac{d y}{d x}=6 x+p$ so $f^{\prime}(2)=12+p$.
Parallel lines have the same gradient so $12+p=5$ so $p=-7$.

