Exercises

🗞 🛧 🥏 🛛 Dr Laure Helme-Guizon 🛛 🖉 🛣 SCEGG

 Image: A state
 Image: A stat

1 Preliminary Work

1.1 Intuitive idea of limits

□ Deriv. DrH Exercise 1

Read the limits from the graph of the function f represented below.

5.
$$\lim_{x \to -2^{-}} f(x) = \dots$$

6.
$$\lim_{x \to -2} f(x) = \dots$$

7. $\lim_{x \to 0} f(x) = \dots$

Rule of thumb for Limits

Limits are what they should be, meaning you can tell right away what they are, unless one of the following *inderterminate* forms appears : $"\frac{0}{0}$ ", " $\frac{\infty}{\infty}$ ", " $\infty - \infty$ ", " 0^0 " and " 1^∞ ".

where for example " $\frac{0}{0}$ " means that the limit of the numerator is 0 and the limit of the denominator is 0 (Do not let the notation mislead you : they are NOT *equal* to 0, they *approach* 0).

Interestingly enough, when there is an indeterminate form, anything could happen : maybe the limit does not exist, maybe it does but in that case it could be any number.

- 🖗 - Surviving indeterminate forms

In order to deal with the indeterminate forms, you will usually need to factorise then simplify the expression ... until it no longer is an indeterminate form.

DERIVATIVE

Y11

SCEGGS Darlinghurst 🐁 🛧 🗞 27 July 2016 🖉 🛧 🗞

□ Deriv. DrH Exercise 2

- 1. $\lim_{x \to +\infty} x^2 = \dots$
- **2.** $\lim_{x \to -\infty} x^3 1 = \dots$
- **3.** $\lim_{x \to 0} \frac{1+x}{2-3x} = \dots$
- 4. $\lim_{x \to 0^+} \frac{1}{x} = \dots$
- 5. $\lim_{x \to 0^{-}} \frac{1}{x} = \dots$ 6. $\lim_{x \to 0} \frac{3x - 4x^5}{x} = \dots$

□ Deriv. DrH Exercise 3

- 1. $\lim_{x \to +\infty} x^2 + 3 = \dots$
- **2.** $\lim_{x \to +\infty} x^2 5x = \dots$
- **3.** $\lim_{x \to -\infty} x^2 5x = \dots$

Deriv. DrH Exercise 4 Eval

aluate
$$\lim_{x \to \frac{7}{2}} \frac{4x^2 - 49}{2x - 7}$$

Deriv. DrH Exercise 5 Evaluate $\lim_{r \to -3} \frac{x^3 + 27}{9 - x^2}$

□ Deriv. DrH Exercise 6

- 1. $\lim_{x \to 1} \frac{x^2 1}{x + 1} = \dots$ 2. $\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \dots$
- **3.** $\lim_{x \to 3} \frac{x^3 8}{3x 6} = \dots$
- 4. $\lim_{x \to 2} \frac{x^3 8}{3x 6} = \dots$
- 5. $\lim_{x \to 2.5} \frac{2x^2 x 10}{2x 5} = \dots$

□ Deriv. DrH Exercise 7

- 1. $\lim_{x \to 3} \frac{x^2 9}{x + 3} = \dots$
- **2.** $\lim_{x \to -3} \frac{x^2 9}{x + 3} = \dots$
- **3.** $\lim_{x \to 3} \frac{x^3 27}{3x 9} = \dots$
- 4. $\lim_{x \to 2} \frac{x^3 27}{3x 9} = \dots$
- 5. $\lim_{x \to 2} \frac{x^3 8}{3x 6} = \dots$
- **6.** $\lim_{x \to 2} \frac{2x^2 x 6}{-2x + 4} = \dots$

Deriv. DrH Exercise 8 Let $f(x) = -2 - \frac{1}{x+5}$

- **1.** Find the derivative of f
- **2.** Sketch the graph of *f*

- **3.** Find $\lim_{x \to +\infty} f(x)$
- 4. Find $\lim_{x \to -\infty} f(x)$
- 5. Find $\lim_{x \to -5^+} f(x)$
- 6. Find $\lim_{x \to -5^-} f(x)$

Deriv. DrH Exercise 9 Let $f(x) = 7 + \frac{1}{x-3}$

- **1.** Find the derivative of f
- **2.** Sketch the graph of f
- **3.** Find $\lim_{x \to +\infty} f(x)$
- 4. Find $\lim_{x \to -\infty} f(x)$
- 5. Find $\lim_{x \to 0} f(x)$
- 6. Find $\lim_{x \to 3^-} f(x)$

□ Deriv. DrH Exercise 10

1.2 What if there is something other than *x* in the function?

 \Box **Deriv. DrH Exercise 11** What if there is something other than x in the function?

Let $f(x) = \frac{x+1}{x-1}$.

Sally says that $f(\frac{1}{x}) = -f(x)$ and Tara says that this is completely wrong. Who is right? Give reasons (I mean a mathematical reason, not « Tara is usually right » :-).

2 Differenciating from First Principles

"Differenciate using First Principles" means using the *definition* of the derivative, i.e., the limit of the rate of change :

If the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ exists, then the function *f* is *differentiable at x* and the derivative at *x* is equal to the above limit, i.e.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

3 Differentiating powers

□ Deriv. DrH Exercise 12

Find the derivative of the following functions.

1.
$$f_1(x) = x^7 \sqrt{x}$$
.
2. $f_2(x) = \frac{x^7 \sqrt{x}}{3}$.
3. $f_3(x) = \frac{x^4}{\sqrt{x}}$.

□ Deriv. DrH Exercise 13

Let *f* be the function defined for all *x* by $f(x) = x^4$

- **1.** Find the derivative of f.
- **2.** Prove that the function 'looks like the square function' meaning that
 - **a.** it is decreasing for x < 0
 - **b.** it is increasing for x > 0
 - **c.** and it has a horizontal tangent for x = 0.

□ Deriv. DrH Exercise 14

Let *f* be the function 'cube root' defined for all x > 0by $f(x) = \sqrt[3]{x}$

- **1.** Find the derivative of *f* and rewrite it without indices.
- **2.** Prove that the function 'cube root' is increasing on its domain.

4 Chain Rule

 \Box **Deriv. DrH Exercise 15** Let *f* be the function defined for all x > 0 by $f(x) = (\sqrt{x})^3$. The goal of this exercise is to find the derivative of *f* using different methods.

- Find the derivative of *f* using the formula for differentiating a power of *x*. First rewrite *f*(*x*) = x^α with α =
- **2.** Find the derivative of *f* using the Chain rule. First rewrite $f(x) = u^3$ with $u = \dots$
- **3.** Find the derivative of *f* using the Chain rule. First rewrite $f(x) = \sqrt{u}$ with $u = \dots$

□ **Deriv. DrH Exercise 16** Let *u* be the function defined by $u(x) = -2x^2 + 8x + 42$. Let *f* be the function defined by $f(x) = \sqrt{u(x)}$.

- **1.** Natural domain of f:
 - **a.** Write u(x) in a factorised form.
 - **b.** What is the natural domain of *f* ?
- **2.** Find the *x*-coordinate of any point where the tangent to the graph of *f* is horizontal.

Deriv. DrH Exercise 17 Find the derivative of $f(x) = \frac{6}{(2x+5)^3}$

5 Product rule

□ **Deriv. DrH Exercise 18** Let *f* be the function defined by $f(x) = -3x\sqrt{1-4x}$.

- **1.** Find the natural domain of f.
- **2.** Differentiate f.
- **3.** Find the point(s) where the tangent to the graph of *f* is horizontal.

6 Quotient rule

7 Differentiability

□ **Deriv. DrH Exercise 19** Let *f* be the function de- $((x-2)^2)$ if $x \le 3$

fined by $f(x) = \begin{cases} (x-2)^2 & \text{if } x \le 3\\ 2 - (x-4)^2 & \text{if } x > 3 \end{cases}$

- **1.** Sketch the graph of f.
- **2.** Is f continuous at x = 3?
- **3.** Is *f* differentiable at x = 3?

8 Tangent, Normal

□ **Deriv. DrH Exercise 20** Is it possible to chose *p* such that the tangent to $y = 3x^2 + px + 7$ at the point with *x*-coordinate equal to 2 is parallel to the straight line ℓ with equation 5x - y + 8 = 0?

In case you were wondering, this was written using ET_EX (free software for beautiful documents).

- Solution of Deriv. DrH Exercise 1 .
- Solution of Deriv. DrH Exercise 2.

Solution of Deriv. DrH Exercise 3.

Solution of Deriv. DrH Exercise 4. $\frac{4x^2-49}{2x-7} = 2x+7 \text{ so } \lim_{x \to \frac{7}{2}} \frac{4x^2-49}{2x-7} = 2\frac{7}{2}+7 = 14$

Solution of Deriv. DrH Exercise 5. $\frac{x^3+27}{9-x^2} = -\frac{x^2-3x+9}{x-3} \text{ so } \lim_{x \to -3} \frac{x^3+27}{9-x^2} = -\frac{(-3)^2-3(-3)+9}{-3-3} = -\frac{9}{2}$

Solution of Deriv. DrH Exercise 6.

Solution of Deriv. DrH Exercise 7.

- 1. $\lim_{x \to 3} \frac{x^2 9}{x + 3} = \dots$ 2. $\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = \dots$ 3. $\lim_{x \to 3} \frac{x^3 - 27}{3x - 9} = \dots$ 4. $\lim_{x \to 2} \frac{x^3 - 27}{3x - 9} = \dots$ 5. $\frac{x^3 - 8}{3x - 6} = \frac{x^2 + 2x + 4}{3}$ so $\lim_{x \to 2} \frac{x^3 - 8}{3x - 6} = 8$
- 6. Simplify: $\frac{2x^2 x 6}{-2x + 4} = -\frac{2x + 3}{2}$ so $\lim_{x \to 2} \frac{2x^2 x 6}{-2x + 4} = -\frac{7}{2}$

Solution of Deriv. DrH Exercise 8.

- 1. $f(x) = -2 \frac{1}{x+5} = -2 (x+5)^{-1}$ so its derivative is $f'(x) = 0 - 1 \times -1 \times (x+5)^{-2} = \frac{1}{(x+5)^2}$
- **2.** Graph of *f*

- 4. $\lim_{x \to \infty} f(x) = -2$
- **5.** As *x* approaches -5 from the right, f(x) becomes infinitely large in absolute value (and negative) so the limit is $-\infty$. $\lim_{x \to -5^+} f(x) = -\infty$
- 6. As *x* approaches -5 from the left, f(x) becomes infinitely large (and positive) so the limit is $+\infty$. $\lim_{x \to -5^{-}} f(x) = +\infty.$

Solution of Deriv. DrH Exercise 9.

1. $f(x) = 7 + \frac{1}{x-3} = 7 + (x-3)^{-1}$ so its derivative is $f'(x) = 0 - 1 \times (x-3)^{-2} \times 1 = -\frac{1}{(x-3)^2}$

- $4. \lim_{x \to -\infty} f(x) = 7$
- **5.** As *x* approaches 3 from the right, f(x) becomes infinitely large in absolute value (and positive) so the limit is $+\infty$. $\lim_{x \to -5^+} f(x) = +\infty$
- **6.** As *x* approaches 3 from the left, f(x) becomes infinitely large (and negative) so the limit is $-\infty$. $\lim_{x \to 3^{-}} f(x) = -\infty.$

Solution of Deriv. DrH Exercise 10.

Solution of Deriv. DrH Exercise 11.

 $f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}+1}{\frac{1}{x}-1} = \frac{1+x}{1-x}$ (multiply the numerator and the denominator by *x*). Now note that $\frac{1+x}{1-x} = \frac{x+1}{-(x-1)} = -\frac{x+1}{x-1} = -f(x)$ so Sally is right.

Solution of Deriv. DrH Exercise 12.

- 1. $f_1(x) = x^7 \sqrt{x} = x^7 x^{\frac{1}{2}} = x^{7+\frac{1}{2}} = x^{\frac{15}{2}}.$ Therefore, $f'_1(x) = \frac{15}{2} x^{\frac{15}{2}-1} = \frac{15}{2} x^{\frac{13}{2}} = \frac{15}{2} x^{\frac{12}{2}+\frac{1}{2}} = \frac{15}{2} x^{\frac{12}{2}+\frac{1}{2}} = \frac{15}{2} x^6 \sqrt{x}.$
- **2.** $f_2(x) = \frac{x^7 \sqrt{x}}{3} = \frac{1}{3} x^7 \sqrt{x} = \frac{1}{3} f_1(x).$ Therefore, $f_2'(x) = \frac{1}{3} f_1'(x) = \frac{1}{3} \times \frac{15}{2} x^6 \sqrt{x} = \frac{5}{2} x^6 \sqrt{x}$
- **3.** $f_3(x) = \frac{x^4}{\sqrt{x}} = \frac{x^4}{x^{\frac{1}{2}}} = x^{4-\frac{1}{2}} = x^{\frac{7}{2}}.$ Therefore, $f'_3(x) = \frac{7}{2}x^{\frac{7}{2}-1} = \frac{7}{2}x^{\frac{5}{2}} = \frac{7}{2}x^{\frac{4}{2}+\frac{1}{2}} = \frac{7}{2}x^2x^{\frac{1}{2}} = \frac{7}{2}x^2\sqrt{x}$

Solution of Deriv. DrH Exercise 13. Un jour....

Solution of Deriv. DrH Exercise 14. Un jour....

Solution of Deriv. DrH Exercise 15.

1. $f(x) = (\sqrt{x})^3 = x^{\frac{3}{2}}$, so $f(x) = x^{\alpha}$ with $\alpha = \frac{3}{2}$. Therefore its derivative is $f'(x) = \frac{3}{2}x^{\frac{3}{2}-1} = \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}\sqrt{x}$

- **2.** Find the derivative of *f* using the Chain rule. First rewrite $f(x) = u^3$ with $u = \sqrt{x}$. Therefore $f'(x) = 3u^2 \times \frac{1}{2\sqrt{x}} = 3\sqrt{x}^2 \times \frac{1}{2\sqrt{x}} = 3x \times \frac{1}{2\sqrt{x}} = \frac{3x}{2\sqrt{x}} = \frac{3x \times \sqrt{x}}{2\sqrt{x}} = \frac{3}{2\sqrt{x}}\sqrt{x}$
- **3.** $f(x) = (\sqrt{x})^3 = x^{\frac{3}{2}} = (x^3)^{\frac{1}{2}} = \sqrt{x^3} = \sqrt{u}$ with $u = x^3$. Therefore $f'(x) = \frac{1}{2\sqrt{u}} \times 3x^2 = \frac{1}{2\sqrt{x^3}} \times 3x^2 = \frac{3x^2}{2\sqrt{x^3}} = \frac{3x^2}{2x^{\frac{3}{2}}} = \frac{3x^2x^{-\frac{3}{2}}}{2} = \frac{3x^{2-\frac{3}{2}}}{2} = \frac{3x^2}{2} = \frac{3\sqrt{x}}{2} = \frac{3\sqrt{x}}{2} = \frac{3}{2}\sqrt{x}.$

Of course, we get the same derivative each and every time.

Solution of Deriv. DrH Exercise 16.

- **1.** Natural domain of f:
 - **a.** u(x) = -2(x+3)(x-7)
 - **b.** The natural domain of *f* is all the values of *x* such that $u(x) \ge 0$. i.e. $-3 \le x \le 7$. (Graph *u*, using the *x*-intercepts found in part 1).

 $f(x) = \sqrt{u(x)}$ with $u(x) = -2x^2 + 8x + 42$ so its derivative is $f'(x) = \frac{1}{2\sqrt{u}} \times (-4x + 8) = \frac{-2x+4}{\sqrt{-2x^2+8x+42}}$. The *x*-coordinate of any point where the tangent to the graph of *f* is horizontal is a solution of f'(x) = 0 i.e. x = 2.

2. Solution of Deriv. DrH Exercise 17.

 $\frac{d}{dx} \left(\frac{6}{(2x+5)^3} \right) = 6 \frac{d}{dx} \left(\frac{1}{(2x+5)^3} \right) = 6 \frac{d}{dx} \left((2x+5)^{-3} \right) = 6 \frac{d}{du} \left(u^{-3} \right) \frac{d}{dx} (2x+5) \text{ with } u = 2x+5.$ $f'(x) = 6 \times -3u^{-4} \times 2 = -36(2x+5)^{-4} = -\frac{36}{(2x+5)^4}.$

Solution of Deriv. DrH Exercise 18.

1. Natural domain of f:

2. $f'(x) = \frac{d}{dx} \left(-3x\sqrt{1-4x} \right) = \frac{18x-3}{\sqrt{-4x+1}}$

3. The *x*-coordinate of any point where the tangent to the graph of *f* is horizontal is a solution of f'(x) = 0. $f'(x) = 0 \iff 18x - 3 = 0 \iff x = \frac{1}{6}$. The *y*-coordinate of the point is $y = f(\frac{1}{6}) = -3 \times \frac{1}{6}\sqrt{1 - 4 \times \frac{1}{6}} = -\frac{1}{2}\sqrt{\frac{1}{3}} = -\frac{\sqrt{3}}{6}$

ANSWER : The tangent to the the graph of *f* is horizontal at the point with coordinates $\left(\frac{1}{6}, -\frac{\sqrt{3}}{6}\right)$

Solution of Deriv. DrH Exercise 19.

- **2.** $\lim_{x\to 3^-} f(x) = 1$ and $\lim_{x\to 3^+} f(x) = 1$. They are equal so *f* is continuous at x = 3. This is what we expected from the diagram as there is no break in the graph.
- **3.** Strategy : Find the derivative on both sides of 3 and take their limit.

 $\lim_{x\to 3^-} f'(x) = 2$ and $\lim_{x\to 3^+} f'(x) = 2$. They are equal so f is differentiable at x = 3 with f'(3) = 2. This is what we expected from the diagram as there is no break and no sharp corner in the graph.

Solution of Deriv. DrH Exercise 20.

 $5x - y + 8 = 0 \iff y = 5x + 8$ so the gradient of ℓ is 5. $\frac{dy}{dx} = 6x + p$ so f'(2) = 12 + p. Parallel lines have the same gradient so 12 + p = 5 so

p = -7.