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Abstract of Dissertation

In recent years, there has been a lot of interests in Khovanov cohomology theory for knots
and links. For each link L, Khovanov defines a sequence of cohomology groups whose
“graded” Euler characteristic is the Jones polynomial of L. These groups were constructed
through a categorification process which starts with a state sum of the Jones polynomial,
constructs a group for each term in the summation, and then defines boundary maps be-
tween these groups appropriately.

It is natural to ask if similar categorifications can be done for other invariants with state
sums. In this thesis, we establish a cohomology theory that categorifies the chromatic
polynomial for graphs.

In Chapter (1), we explain how to construct for each graph G a cochain complex whose
graded Euler characteristic is the chromatic polynomial of G. This theory is based on the
polynomial algebra with one variable X satisfying X2 = 0.

In Chapter (2), we show our cohomology theory satisfies a long exact sequence which
can be considered as a categorification for the well-known deletion-contraction rule for the
chromatic polynomial. This exact sequence enables us to compute the cohomology groups
for several classes of graphs.

This brings some natural questions: Our initial construction was based on the algebra
Z[X]/(X2). We show in Chapter (3) that it can be extended to a large class of algebras
and that some properties carry through.

Another question that arises from the computational examples is to determine which graphs
will have torsion in at least one cohomology group. We will answer that in Chapter (4).

Some questions remain open to our cohomology theory. We will state them in Chapter (5).
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Introduction

In recent years, there has been a great deal of interests in Khovanov cohomology1 theory
introduced in [K00]. For each link L in S3, Khovanov defines a sequence of cohomology
groups Hij(L) whose Euler characteristic

∑
i,j(−1)iqj rankHi,j(L) is a version of the Jones

polynomial of L. These groups were constructed through a categorification process which
starts with a state sum of the Jones polynomial, constructs a group for each term in the
summation, and then defines boundary maps between these groups appropriately.

The word categorification comes from Khovanov’s original paper in which he asked if
the quantum invariants of knots and 3-manifolds can be interpreted as Euler Characteristics
of some cohomology theories of 3-manifolds. He proved that such an interpretation exists
for the Jones polynomial of links in 3-space. Since then, the word categorification has been
used to describe the process of interpreting a mathematical object as the (graded) Euler
characteristic of a cochain complex. This is its meaning here.

The Khovanov cohomology has proved to be a very powerful tool. First, it is strictly
stronger than the Jones polynomial. For instance, it distinguishes knots that the Jones
polynomial cannot distinguish [BN02]. Also, there are examples of mutant links with dif-
ferent Khovanov cohomology [W03]. This shows that, contrary to the Jones polynomial,
the Khovanov cohomology cannot be defined by a skein relation. Hence the Khovanov
cohomology is more than a cosmetic upgrade of the Jones polynomial. Second, it provides
a new approach to some results in knot theory. Recently Jacob Rasmussen [R04] defined
a new knot invariant based on Khovanov cohomology which he used to derive a new proof
of the Milnor conjecture on the slice genus of torus knots. This is the first proof which
doesn’t depend on the techniques of gauge theory and it is much simpler than all the pre-
viously known proofs. Third, there is good evidence for some deep connections with the
Ozsvath-Szabo theory which is another recent exciting development in gauge theory type
invariant.

We start with a review of Khovanov cohomology for knots and links based on the articles
1This construction is often called Khovanov homology rather than Khovanov cohomology. We follow

Khovanov (and the usual definition) and call it Khovanov cohomology.
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[K00], [BN02], [V02] and [A05]. We opt for a presentation of Khovanov cohomology which
is as close as possible to our version for graphs.

For an oriented link L, Mikhail Khovanov [K00] constructed abelian groups Hi,j(L)
which depend on two integers i, j such that

J(L)(q) =
∑
i,j

(−1)iqj rank
(Hi,j(L)

)
where J(L) is a version of the Jones polynomial and where rank

(Hi,j(L)
)

denotes the free
rank of the abelian group Hi,j(L) which is equal to dimQ(Hi,j(L)⊗Q). These groups were
constructed as cohomology groups of cochain complexes according to a process that we
describe now.

2



The Kauffman bracket < D > (q) of an unoriented link diagram D is defined by the
relations2

1. < k disjoint circles >= (q + q−1)k

2. < >=< > −q < >

where , and stand for link diagrams that are the same except in the neigh-
borhood described in these pictures.

This version of the Kauffman bracket is equal to the original Kauffman bracket mul-
tiplied by (−A2 − A−2)A−n where n is the number of crossings of D, after the change of
variable q = −A−2. This new version of the bracket is not invariant under the second
Reidemeister move, as Viro [V04] pointed out. However the invariance is not needed in the
construction.

Let
−→
D be an oriented link diagram of an oriented link L. Let D be the same diagram

without orientation. Let n+ and n− be respectively the number of positive and negative
crossings of the diagram

−→
D . Define the unnormalized Jones polynomial J(

−→
D) to be

J(
−→
D) = (−1)−n−qn+−2n− < D >

J(
−→
D) is invariant under ambient isotopy and under the three Reidemeister moves hence

it is a link invariant and from now on we will denote it J(L)(q) or simply J(L). This version
of the Jones polynomial is equal to the original Jones polynomial multiplied by −t1/2−t−1/2

after the change of variable q = −t1/2.
We call and the 0-smoothing and 1-smoothing of , respectively. We fix an

ordering on the crossings of D and label them 1 to n. With these conventions, each vertex
α of the n-dimensional cube {0, 1}n corresponds to a smoothing of all the crossings of D

according to α, i.e. if the ith coordinate of α is 0 (resp. 1), the ith crossing is smoothed by
a 0-smoothing (resp. a 1-smoothing). The result is a union of planar circles. The diagram
D together with a α ∈ {0, 1}n is called a state and is denoted by sα or simply s if there
is no ambiguity. The number of circles produced by the smoothing of D according to α is
denoted |sα| or simply |s|. Similarly, we denote by αs the vertex α corresponding to the
state s. The number of 1’s in αs, i.e. the number of 1-smoothings, is denoted by is.

The bracket polynomial can be expressed as a state sum

< D >=
∑

i

(−1)i
∑

states s s.t. is=i

qis(q + q−1)|s| (1)

2Our slightly unorthodox definitions of the Jones polynomial and the Kauffman bracket polynomial follow

Khovanov [K00].
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which in turn yields a state sum for the unnormalized Jones polynomial,

J(
−→
D) = (−1)−n−qn+−2n−

∑
i

(−1)i
∑

states s s.t. is=i

qis(q + q−1)|s| (2)

The whole procedure of computing the Jones polynomial using this state sum can be
depicted as in Figure (1), which describes the case of the right handed trefoil knot. Each
column in the diagram corresponds to a value of i and each rectangle describes a state. The
polynomial in variable q in the corner of each rectangle is the contribution qis(q + q−1)|s|

of this state to the bracket polynomial.

100

010

001

i=2

i=0

i=1 i=3

110

101

011

000

q  (q+q   )-1 22

q  (q+q   )-1 22

q  (q+q   )-1 22

q  (q+q   )-1 33

111

q(q+q   )-1

q(q+q   )-1

q(q+q   )-1

(q+q   )-1 2
+

3q  (q+q   )-1 223q(q+q   )-1(q+q   )-1 2 - + - q  (q+q   )-1 33

(-1)   q             with  n  = 3  and n  = 0-n n   -2n-+
+ -

   -q  +q  +q  +q = J(L)9 5 3

+

+

+

= -q  +q  +1+q    = < D >6 2 -2

12

3

Figure 1: A state sum based diagram to compute the Jones polynomial of the right handed
trefoil knot.

Before explaining Khovanov’s construction, we need to go over some background mate-
rial.
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Graded dimension of a graded Z-module, Graded cochain complex, Graded
Euler characteristic: A quick review.

Definition 1. A Z-module M is said to be graded if there exists a direct sum decomposition
M = ⊕∞

j=0Mj where each Mj is a Z-submodule. The elements of Mj are called homogeneous
elements of degree j of M .

Note that the Mj ’s are Z-submodules which implies that multiplying by elements of the
ring Z doesn’t change the degree. In other words, the elements of the ring Z have degree
0. The fact that the Mj ’s are Z-submodules also implies that 0 can be considered to have
any degree. This allows torsion.

Definition 2. Let j0 ∈ N and let M = ⊕∞
j=−j0

Mj be a graded Z-module where Mj denotes
the set of homogeneous elements of degree j of M . Assume that each Mj has finite free
rank, where the free rank of the abelian group Mj is rank(Mj) := dimQ(Mj ⊗ Q). The
graded dimension of M is the Laurent series

q dimM :=
∞∑

j=−j0

qjrank(Mj).

Remark 3. M may have torsion but the graded dimension will not detect it.

Proposition 4. Let Mand N be graded Z-modules.
q dim (M ⊕ N) = q dim (M) + q dim (N)
and q dim (M ⊗ N) = q dim (M) · q dim (N)

Example 5. Let M = Zv+ ⊕ Zv− be the graded free Z-module with two basis elements
v+ and v− whose degrees are 1 and −1 respectively. This is the Z-module we will use to
construct Khovanov cochain complex.

Note that q dimM = q + q−1 and q dimM⊗k = (q + q−1)k.

In order to take care of the q� factors in the state sum, we will need an operation on
graded Z-modules that shifts the degree of all the elements by �:

Definition 6. Let · {�} be the degree shift operation on graded Z-modules. That is, if
M = ⊕jMj is a graded Z-module where Mj denotes the j-th graded component of M , we
set M {�}j := Mj−� so that q dim M {�} = q� · q dimM. In other words, all the degrees are
increased by �.

In order to take care of the (−1)−n− in the normalization factor (−1)−n−qn+−2n− in
J(L), we will use the following operation on cochain complexes:

Definition 7. If C is a cochain complex · · · → C
i → C

i+1 → · · · , we call i the height of
the cochain group C

i of that cochain complex.

5



The height shift operation on cochain complexes, denoted ·[s], is defined the following
way: If C = C[s] is the image of the cochain complex C under [s], then Ci = C

i−s with all
the differentials shifted accordingly.

Definition 8. Let M = ⊕jMj and N = ⊕jNj be graded Z-modules where Mj and Nj

denote the set of homogeneous elements of degree j of M and N respectively. A Z-module
map φ : M → N is said to be graded with degree d if for all j, φ(Mj) ⊆ Nj+d, i.e. elements
of degree j are mapped to elements of degree j + d.

A graded (co)chain complex is a (co)chain complex for which the cochain groups are graded
Z-module and the differentials are graded.

Definition 9. The graded Euler characteristic χq(C) of a graded cochain complex C is the
alternating sum of the graded dimensions of its cohomology groups,
i.e. χq(C) =

∑
0�i�n

(−1)i · q dim(H i).

The following was stated in [BN02]. For convenience of the reader, we include a proof
here.

Proposition 10. If the differential is degree preserving and all cochain groups have finite
free rank, the graded Euler characteristic is also equal to the alternating sum of the graded
dimensions of its cochain groups i.e.

χq(C) =
∑

0�i�n

(−1)iq dim(H i) =
∑

0�i�n

(−1)iq dim(Ci).

Proof. It suffices to show that
∑

0≤i≤n
(−1)iq dim(H i) =

∑
0≤i≤n

(−1)iq dim(Ci). The corre-

sponding result for the non graded case is well known i.e. for a finite cochain complex C =
0 → C0 → C1 → ... → Cn → 0 with cohomology groups H0, H1, ..., Hn, if all the cochain
groups are finite dimensional then the Euler characteristic χ(C) =

∑
0�i�n

(−1)irank(H i) is

also equal to
∑

0�i�n
(−1)irank(Ci).

Now, let C be a graded cochain complex with a degree preserving differential. With the
above notations, decomposing elements by degree yields Ci = ⊕

j�0
Ci,j(G). Since the differ-

ential is degree preserving, the restriction to elements of degree j, i.e. 0 → C0,j → C1,j →
... → Cn,j → 0 is a cochain complex. The previous result tells us

∑
0�i�n

(−1)irank(H i,j)

=
∑

0�i�n
(−1)irank(Ci,j). Now, multiply this by qj and take the sum over all values of j and

you get the announced result, since Ci = ⊕
j�0

Ci,j(G) and H i = ⊕
j�0

H i,j(G).

We are now ready to explain Khovanov’s construction.
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The idea
First we produce a graded cochain complex C(D) whose graded Euler characteristic is

the bracket polynomial < D >=
∑

i(−1)i
∑

states s s.t. is=i
qis(q + q−1)|s|.

This seems to be a reasonable goal since this state sum looks like an Euler characteristic
since it is an alternating sum. The construction of the cochain complex C(D) is done in
two steps: constructing the cochain groups and defining the differential.

Then, simply by shifting the heights and degrees of this cochain complex, we get a
second cochain complex C whose graded Euler characteristic is the Jones polynomial J(L)
as announced.

This description of the construction is based on Bar-Natan’s presentation of Khovanov
cohomology [BN02].

The cochain groups
Let

−→
D be an oriented link diagram. Note that the orientation will not be used to con-

struct the cochain complex C(D). This is consistent with the fact that C(D) categorifies
the bracket polynomial, an invariant of unoriented links. However, when it comes to de-
riving the cochain complex C(

−→
D) from C(D), the height and degree shifts that we use will

depend on the orientation. This is consistent with the fact that C(
−→
D) categorifies the Jones

polynomial, an invariant of oriented links.
Let M be as in Example (5). We fix an ordering on the set of crossings of D and label

the crossings 1 to n. To each state s labelled by the vertex α = (α1, α2, ...., αn) of the cube
{0, 1}n , we associate the graded free Z-module Cα(D) as follows. We assign a copy of M
to each circle produced by the smoothing of all the crossings of D according to α, we take
their tensor product, and then we raise the degrees by is. Therefore, Cα(D) = M⊗|sα|{is}.

This is shown in Figure (2). The reason for this choice is that the graded dimension of
Cα(D) is the polynomial qis(q + q−1)|sα| that appears in the vertex α of the cube in Figure
(1).

To get the cochain groups, we “flatten” the cube by taking direct sums along the
columns. A more precise definition is:

Definition 11. We set the ith cochain group C
i(D) of the cochain complex C(D) to be the

direct sum of all the Z-modules Cα(D) at height i, i.e. C
i(D) = ⊕

|iα|=i
Cα(D).

It remains to define a degree preserving differential for the chain complex C.

A degree preserving differential.
So far, in order to define the cochain groups C

i(D), we turned each vertex of the cube
{0, 1}n into a Z-module and then took direct sums along columns. Now, in order to define
the differential, we turn each edge of the cube, represented by arrows between vertices in

7



000 111000

100

010

001

i=2

i=0

i=1

C  (        )0

i=3
2M     {2} 

110

101

011

2M     {2} 

2

3

C  (        )1 C  (        )2 C  (        )3C(        ) =

12

3

2

M{1}

M     {2} 

M     {3} M{1}

M{1}

M

Figure 2: The cochain groups C
i in the case of the right handed trefoil knot.

Figure (3), into a Z-linear map between Z-modules and then add these maps along columns
as shown in Figure (3).

To define the differential maps di, we need to make use of the edges of the cube {0, 1}n.
Each edge ξ of {0, 1}E can be labelled by a sequence in {0, 1, ∗}n with exactly one ∗. The
tail of the edge is obtained by setting ∗ = 0 and the head is obtained by setting ∗ = 1. The
height |ξ| is defined to the height of its tail, which is also equal to the number of 1’s in ξ.

Given an edge ξ of the cube, let α1 be its tail and α2 be its head. The per-edge map
dξ : Cα1(D) → Cα2(D) is defined as follows. Changing exactly one marker from 0 to 1
means changing a 0-smoothing to a 1-smoothing. This can either split a circle or join two
circles.

� If changing the marker from 0 to 1 joins two circles then we set dξ : Cα1(D) → Cα2(D)
to be identity on the tensor factors corresponding to circles that don’t participate and we
complete the definition of dξ using the Z-linear map m : M ⊗ M → M defined on basis
elements of M⊗M by

m : M⊗M → M


v+ ⊗ v+ �→ v+

v+ ⊗ v− �→ v−
v− ⊗ v+ �→ v−
v− ⊗ v− �→ 0

� If changing the marker from 0 to 1 splits a circle then then we set dξ : Cα1(D) →

8



Cα2(D) to be identity on the tensor factors corresponding to circles that don’t participate
and we complete the definition of dξ using the Z-linear map ∆ : M → M⊗M defined on
basis elements of M by

∆ : M → M⊗M
{

v+ �→ v+ ⊗ v− + v− ⊗ v+

v− �→ v− ⊗ v−

The cube now commutes because the multiplication map m (resp. the comultiplication
map ∆) is associative and commutative (resp. coassociative and cocommutative).

In order for the differential to satisfy d ◦ d = 0 we want it to anti-commute and this can
be achieved by sprinkling negative signs as explained below.

We define the differential di : C
i(D) → C

i+1(D) by di =
∑

|ξ|=i(−1)ξdξ,where (−1)ξ =
−1 (resp. 1) if there is an odd (resp. even) number of 1’s before ∗ in ξ. In Figure (3), we
have indicated the maps for which (−1)ξ = −1 by a little circle at the tail of the arrow.

000 111000
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010

001

i=2

2

i=0

i=1

M

C  (        )0

d
*00

d
0*0

d
00*

d
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d
10*

d*10

d
01*

d
*01

d
0*1

d
1*1

d
11*

d
*11

d1d0 d2

 ξ =2
(-1)  dξ

ξ +

i=3

 ξ =1
(-1)  dξ

ξ + ξ =0
(-1)  dξ

ξ +

M{1}

110

101

011

3M    {3} 

C  (        )1 C  (        )2 C  (        )3C(        ) =

C(          )

12

3

[-n  ]   {            }  with  n  = 3  and n  = 0- n   -2n-+ + -

M{1}

M{1} 2M   {2}

2M   {2}

2M   {2}

Figure 3: Per-edge maps and chain maps in the case of the right handed trefoil knot.

Note that m and ∆ are of degree -1 so with the degree shift in the definition of C
i, the

differential is degree preserving.
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All this proves that C(D) is indeed a cochain complex with a degree preserving differ-
ential. Therefore, C(

−→
D) = C[−n−]{n+ − 2n−}(D) is also a cochain complex with a degree

preserving differential.

Khovanov’s main results
They are summarized in the following theorem:

Theorem 12.

1. C(
−→
D) = 0 → C0(

−→
D) d0→ C1(

−→
D) d1→ · · · dn−1→ Cn(

−→
D) → 0 is a graded cochain complex

whose differential is degree preserving.

2. Although the cochain complex C(
−→
D) depends on the choice of a diagram

−→
D for the

link L, its cohomology groups Hi(
−→
D) depend only on the link L. Therefore they are

denoted by Hi(L).

3. The graded Euler characteristic of the cochain complex C(
−→
D) is the unnormalized

Jones polynomial of L:

χq(C(
−→
D)) =

∑
0≤i≤n

(−1)iqdim(Hi(
−→
D)) =

∑
0≤i≤n

(−1)iqdim(Ci(
−→
D)) = J(L)

Proof.

1. has just been proved.

2. The invariance of Hi(
−→
D) under Reidemeister moves is a deep result. The proofs can

be found in [K00], [BN02] and [A05].

3. We first prove the result for the cochain complex C(D). As observed earlier, for each
state q dim Cα(D) = qis(q + q−1)|sα| by construction. Since C

i(D) = ⊕|iα|=iCα(D),
its graded dimension is q dimC

i(D) =
∑

|iα|=i q
is(q + q−1)|sα|.

Therefore,
∑

0≤i≤n(−1)iq dimC
i(D) =

∑
0≤i≤n(−1)i

∑
|iα|=i q

is(q + q−1)|sα|, which is
equal to < D > by the state sum (1). The differential is degree preserving so by (10),
this is also equal to

∑
0≤i≤n(−1)iq dimH

i(D).

Recall that C(
−→
D) = C(D)[−n−]{n+−2n−}. These height and degree shifts are going to

multiply the graded Euler characteristic by the normalization factor (−1)−n−qn+−2n− .
Hence the graded Euler characteristic of C(

−→
D) is the unnormalized Jones polynomial

as expressed in the state sum (2).
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The above graded cochain complex can easily be seen to be a bi-graded cochain complex.
Let Ci,j(

−→
D) be the subgroup of Ci(

−→
D) consisting of homogeneous elements with degree j.

Let di,j be the restriction of di to elements with degree j. For each j we have a cochain
complex

0 → C0,j(
−→
D) d0,j→ C1,j(

−→
D) d1,j→ · · · dn−1,j→ Cn,j(

−→
D) → 0

The direct sum of these cochain complexes, with the obvious gradings, is equal to the
cochain complex C(

−→
D). The different gradings don’t interfere hence Ci(

−→
D) = ⊕jCi,j(

−→
D)

and Hi(
−→
D) = ⊕jHi,j(

−→
D).

It is natural to ask if similar categorifications can be done for other invariants with state
sums, and indeed, several link invariants were categorified, see [BN04], [K03] and [KR04].

In this thesis, we establish a cohomology theory that categorifies the chromatic polyno-
mial for graphs.

In Chapter (1), we explain how to construct for each graph G a cochain complex whose
graded Euler characteristic is the chromatic polynomial of G. This theory is based on the
polynomial algebra with one variable X satisfying X2 = 0.

In Chapter (2), we show our cohomology theory satisfies a long exact sequence which
can be considered as a categorification for the well-known deletion-contraction rule for the
chromatic polynomial. This exact sequence enables us to compute the cohomology groups
for several classes of graphs.

This brings some natural questions: Our initial construction was based on the algebra
Z[X]/(X2). We show in Chapter (3) that it can be extended to a large class of algebras
and that some properties carry through.

Another question that arises naturally from the computational examples is to determine
which graphs will have torsion in at least one cohomology group. We will answer that in
Chapter (4).

Some natural questions remain open in our cohomology theory. We will state them in
Chapter (5).
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Chapter 1

The construction: From a graph to

cohomology groups

The results of this section are covered in [HR04].

1.1 Facts about the chromatic polynomial

1.1.1 A brief review for the chromatic polynomial

Let G be a graph with vertex set V (G) and edge set E(G). For each positive integer λ,
let {1, 2, · · · , λ} be the set of λ-colors. A λ-coloring of G is an assignment of a λ-color to
vertices of G such that vertices that are connected by an edge in G always have different
colors. Let PG(λ) be the number of λ-colorings of G. It is well-known that PG(λ) satisfies
the deletion-contraction relation

PG(λ) = PG−e(λ) − PG/e(λ)

Furthermore, it is obvious that

PNn(λ) = λn where Nn is the graph with n vertices and no edges.

These two equations uniquely determines PG(λ). They also imply that PG(λ) is always
a polynomial of λ, known as the chromatic polynomial.

1.1.2 A state sum for the computation of the chromatic polynomial

As noted earlier, the starting point for a categorification is a state sum formula. There
exists such a formula for PG(λ).
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For each s ⊆ E(G), let [G : s] be the graph whose vertex set is V (G) and whose edge
set is s, and let k(s) be the number of connected components of [G : s]. We have

PG(λ) =
∑

s⊆E(G)

(−1)|s|λk(s). (1.1)

Equivalently, grouping the terms with the same number of edges yields the state sum
formula

PG(λ) =
∑
i�0

(−1)i
∑

s⊆E(G),|s|=i

λk(s). (1.2)

Formula (1.1) follows easily from the well-known state sum formula for the Tutte poly-
nomial T (G, x, y) =

∑
s⊆E(G)

(x − 1)r(E)−r(s)(y − 1)|s|−r(s), where the rank function r(s) is

the number of vertices of G minus the number of connected components of [G : s]. One
simply applies the known relation P (G, λ) = (−1)r(E)λk(G)T (G; 1 − λ, 0) between the two
polynomials.

1.1.3 A diagram for the computation of the chromatic polynomial

Our cochain complex will depend on an ordering of the edges of the graph. Let G be a
graph and E = E(G) be the edge set of G. Let n = |E| be the cardinality of E. We
fix an ordering on E and denote the edges by e1, · · · , en. For each s ⊆ E, the spanning
subgraph [G : s] (spanning means that it contains all the vertices of G) can be described
unambiguously by an element α = (α1, α2, ...., αn) of {0, 1}n with the convention αi = 1 if
the edge ei is in s and αi = 0 otherwise. This α is called the label of s and will be denoted
αs or simply α. Conversely, to any α ∈ {0, 1}n, we can associate a set sα of edges of G that
corresponds to α. When we think of s in terms of the label α, we may refer to the graph
[G : s] as Gα.

The procedure of taking all the spanning subgraphs of G, of computing their number of
connected components in order to determine their contribution to the chromatic polynomial
as in the state sum of the formula (1.2) can be summarized by a diagram illustrated in Figure
(1.1), in which we write λ = 1 + q for reasons that will become clear soon.

Each subset of edges s, represented in Figure (1.1) by a labeled rectangle, corresponds
to a term in the state sum and therefore will be called a state. Equivalently, if we think of
the state in term of its label, we might call it a vertex of the cube {0, 1}n.

Each state corresponds to a subset s of E, the n-list of 0′s and 1′s at the bottom of
each rectangle is its label αs and the term of the form (1 + q)k(s) = λk(s) is its contribution
to the chromatic polynomial (without sign).

Note that we have drawn all the states that have the same number of edges in the same
column, so that the column with label i = i0 contains all the states with i0 edges. Such
states are called the states of height i0. We denote the height of a state with label α by |α|.
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Figure 1.1: Diagram for a state sum computation of the Chromatic Polynomial when G =
K3

1.2 The cubic complex construction of the cochain complex

1.2.1 The cochain groups

We are going to assign a graded Z-module to each state and define a notion of graded
dimension so that the (1+ q)k that appears in the rectangle is the graded dimension of this
Z-module.
The construction is inspired by Bar-Natan’s description for the Khovanov cohomology for
knots and links [BN02].

Example 13. Let M be the graded free Z-module with two basis elements 1 and X whose
degrees are 0 and 1 respectively. We have M = Z1 ⊕ ZX and q dimM = 1 + q. This is
the Z-module we will use to construct our cochain complex. Note that it is denoted with a
calligraphic M while we use regular M for a generic Z-module.
We have q dim

(M⊗k
)

= (1 + q)k .

The cochain groups

We are now ready to explain our construction. Let G be a graph with n ordered edges, and
let M be as in Example (13). To each vertex α = (α1, α2, ...., αn) of the cube {0, 1}n , we
associate the graded free Z-module Cα(G) = M⊗kα where kα is the number of components
of Gα, by assigning a copy of M to each connected component and then taking the tensor
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product. This is shown in Figure (1.2). The reason for this choice is that the polynomial
(1 + q)k(s) that appears in the vertex α of the cube in Figure (1.1) is q dimCα(G) so by
substituting this into the state sum formula (1.2) we have

PG(q dimM) =
∑
i�0

(−1)i
∑

s⊆E(G),|s|=i

q dimCαs . (1.3)
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C  (K  )3C  (K  )3 C  (K  )3 C  (K  )3
0 1 2 3

Figure 1.2: The cochain groups Ci(K3)

To get the cochain groups, we “flatten” the cube by taking direct sums along the
columns. A more precise definition is:

Definition 14. We set the ith cochain group Ci(G) of the cochain complex C(G) to be the
direct sum of all Z-modules at height i, i.e. Ci(G) = ⊕

|α|=i
Cα(G).

The grading is given by the degree of the elements and we can write the ith cochain group
as Ci(G) = ⊕

j�0
Ci,j(G) where Ci,j(G) denotes the elements of degree j of Ci(G).

For example, the elements of degree one of C1(K3) are the linear combinations with

coefficients in Z of the following six elements: , , ,, ,1 X XX X1
11 X

11 X . These

elements form a basis of the free Z-module C1,1(K3). This will lead to a second description
of our cochain complex explained in section (1.3).

Combining the definition of the cochain groups with the fact that the graded dimension
of a direct sum is the sum of the graded dimensions, from formula (1.3) we get

PG(q dimM) =
∑
i�0

(−1)iq dim Ci. (1.4)
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Recall that by Proposition (10), if the differential is degree preserving and all cochain
groups have finite free rank, the graded Euler characteristic is also equal to the alternating
sum of the graded dimensions of its cochain groups i.e.

χq(C) =
∑

0�i�n

(−1)i · q dim(H i) =
∑

0�i�n

(−1)i · q dim(Ci).

In the next paragraph we will attach a degree preserving differential to the groups
Ci(G) and thus get a cochain complex C(G). Using the above result and formula (1.4), we
see that by construction, the graded Euler characteristic of this cochain complex will be
equal to the chromatic polynomial of the graph G evaluated at the graded dimension of M

i.e.
PG(q dimM) =

∑
i�0

(−1)iq dimH i. (1.5)

1.2.2 The differential

Figure (1.3) gives a picture of what the maps will look like and the details can be found
right after the figure. The diagram comes first because we thought it might be helpful to
have a picture of what is going on while reading the formal definitions.
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Figure 1.3: The differentials

We are first going to define maps between some vertices of the cube {0, 1}n, called per-
edge maps since they correspond to edges of the cube. They are represented by labeled
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arrows in Figure (1.3). We will then build the differential by summing them along columns.
Recall that each vertex of the cube {0, 1}n is labeled with some α = (α1, ...., αn) ∈

{0, 1}n .

Between which vertices are there per-edge maps?

There is a map between two vertices if one can go from one to the other by adding exactly
one edge. In other words, there is a map between two vertices if one of the markers αi is
changed from 0 to 1 when you go from the first vertex to the second vertex and all the
other αi are unchanged, and no map otherwise.

Denote by α the label of the first vertex. If the marker which is changed from 0 to 1
has index i0 then the map will be labeled dξ where ξ = (ξ1, ...., ξn) with ξi = αi if i 
= i0

and ξi = ∗ if i = i0.

For example, in Figure (1.3), the label 0 ∗ 1 of the map d0∗1 means its domain is the
vertex labeled 001 and its target is the vertex labeled 011.

Definition of the per-edge maps

Changing exactly one marker from 0 to 1 corresponds to adding an edge.
� If adding that edge doesn’t affect the number of components, then the map is identity

on M⊗k.

� If adding that edge decreases the number of components by one, then we set dξ :
M⊗k → M⊗k−1 to be identity on the tensor factors corresponding to components that
don’t participate and we complete the definition of dξ on the affected components using the
Z-linear map m : M⊗M → M defined on basis elements of M⊗M by

m :


m(1 ⊗ 1) = 1
m(1 ⊗ X) = m(X ⊗ 1) = X

m(X ⊗ X) = 0

Note that identity and m are degree preserving so dξ inherits this property.

“Flatten” to get the differential

The differential di : Ci(G) → Ci+1(G) of the cochain complex C(G) is defined by
di :=

∑
|ξ|=i

(−1)ξdξ where |ξ| is the number of 1’s in ξ and (−1)ξ is defined in the next

paragraph.

Assign a ±1 factor to the per-edge maps dξ

These maps dξ make the cube {0, 1}n commutative. This is because the multiplication map
m is associative and commutative. To get the differential d to satisfy d ◦d = 0, it is enough
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to assign a ±1 factor to these maps in the following way: Assign −1 to the maps that have
an odd number of 1’s before the star in their label ξ, and 1 to the others. This is what was
denoted (−1)ξ in the definition of the differential. In Figure (1.3), we have indicated the
maps for which (−1)ξ = −1 by a little circle at the tail of the arrow.

A straightforward calculation implies:

Proposition 15. This defines a differential, that is, d ◦ d = 0.

Now, we really have a cochain complex C(G) where the cochain groups and the differ-
ential are defined as in the previous two paragraphs, and as already announced in formula
(1.5), we have:

Theorem 16. The graded Euler characteristic of the cochain complex C(G) is equal to the
chromatic polynomial of the graph G evaluated at the graded dimension of M i.e.

PG(q dimM) =
∑
i�0

(−1)iq dimH i.

1.2.3 The cohomology groups are independent of the ordering of the

edges

Let G be a graph with edges labeled 1 to n. For any permutation σ of {1, .., n}, we define
Gσ to be the same graph but with edges labeled in the following way: The edge which was
labeled k in G is labeled σ(k) in Gσ In other words, G is obtained from Gσ by permuting
the labels of the edges of G according to σ.

Theorem 17. The cochain complexes C(G) and C(Gσ) are isomorphic and therefore, the
cohomology groups are isomorphic.
This implies that the cohomology groups are independent of the ordering of the edges so
they are well defined graph invariants.

Proof. Since the group of permutations on n elements is generated by the permutations
of the form (k, k + 1) it is enough to prove the result when σ = (k, k + 1).

We will define a map f such that the following diagram commutes
C(G) : C0(G) d0→ C1(G) d1→ ...

dr−1→ Cr(G) dr→ ...
dn−1→ Cn(G)

↓ f ↓ f ↓ f ... ↓ f

C(Gσ): C0(Gσ) d0→ C1(Gσ) d1→ ...
dr−1→ Cr(Gσ) dr→ ...

dn−1→ Cn(Gσ)
and f is an isomorphism. Since Ci(G) is the direct sum of the states with height i, it is
enough to define f on each of those states.

For any subset s of E with i edges, there is a state in Ci(G) and one in Ci(Gσ) that
correspond exactly to those edges. Let α = (α1, ...., αn) stand for αs(G), the label of s in
G. The situation is illustrated by the following diagram.
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Figure 1.4: Impact of re-ordering of the edges

Let fs be the map between these two states that is equal to −id if αk = αk+1 = 1 and
equal to id otherwise.

Let f : Ci(G) → Ci(Gσ) be defined by f = ⊕
|s|=i

fs.

f is obviously an isomorphism and the fact that the diagram commutes can be checked
by looking at the four cases (αk, αk+1) = (0, 0), (αk, αk+1) = (1, 0), (αk, αk+1) = (0, 1)
and (αk, αk+1) = (1, 1).

1.2.4 A Poincaré polynomial

Recall that the Poincaré polynomial of a sequence of graded Z-modules {M i = ⊕jM
i,j}i

where M i,j is the set of homogeneous elements of M i of degree j, is defined to be two-variable
polynomial (or power series) P (t, q) =

∑
i,j tiqj dimQ(M ⊗Z Q). With our definition of the

graded dimension, this can be rewritten P (t, q) =
∑

i t
iqdim(M i). The Poincaré polynomial

of a sequence of graded Z-modules is a convenient way to store the free ranks of the M i’s.
Following this definition, we define a 2-variable polynomial RG(t, q) by

RG(t, q) =
∑

0�i�n

ti · q dim H i(G).

Proposition 18.
(a) The polynomial RG(t, q) depends only on the graph.
(b)The chromatic polynomial is a specialization of RG(t, q) at t = −1.

Proof. (a) follows immediately from Theorem (17) and (b) follows from our construction.

This polynomial is a convenient way to store the information about the free part of the
cohomology groups and is, by construction, enough to recover the chromatic polynomial.
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1.3 Another Description: The enhanced state construction

These cohomology groups have another description that is similar to Viro’s description for
the Khovanov cohomology for knots [V02]. We explain the details below.

Let {1, X} be a set of colors, and ∗ be a product on Z[1, X] defined by

1 ∗ 1 = 1, 1 ∗ X = X ∗ 1 = X and X ∗ X = 0

Let G = (V, E) be a graph with an ordering on its edges. An enhanced state of G is
S = (s, c), where s ⊆ E and c is an assignment of 1 or X to each connected component of
the spanning subgraph [G : s]. For each enhanced state S, define

i(S) = # of edges in s, and j(S) = # of X in c.

Note that i(S) depends only on the underlying state s, not on the color assignment that
makes it an enhanced state, so we may write it i(s).

� Let Ci,j(G) := Span{S | S is an enhanced state of G with i(S) = i, j(S) = j}, where
the span is taken over Z.

� We define the differential

d : Ci,j(G) → Ci+1,j(G)

as follows. For each enhanced state S = (s, c) in Ci,j(G), define d(S) ∈ Ci+1,j(G) by

d(S) =
∑

e∈E(G)−s

(−1)n(e)Se

where n(e) is the number of edges in s that are ordered before e, Se is an enhanced state
or 0 defined as follows. Let se = s ∪ {e}. Let E1, · · · , Ek be the components of [G :
s]. If e connects some Ei, say E1, to itself, then the components of [G : (s ∪ {e})] are
E1 ∪ {e}, E2, · · · , Ek. We define ce(E1 ∪ {e}) = c(E1), ce(E2) = c(E2), · · · , ce(Ek) = c(Ek),
and Se is the enhanced state (se, ce). If e connects some Ei to Ej , say E1 to E2, then
the components of [G : se] are E1 ∪ E2 ∪ {e}, E3, · · · , Ek . We define ce(E1 ∪ E2 ∪ {e}) =
c(E1) ∗ c(E2), ce(E3) = c(E3), · · · , ce(Ek) = c(Ek).

Note that if c(E1) = c(E2) = X, ce(E1 ∪E2 ∪ {e}) = X ∗X = 0, and therefore ce is not
considered as a coloring. In this case, we let Se = 0. In all other cases, ce is a coloring and
we let Se be the enhanced state (se, ce).

One may find it helpful to think of d as the operation that adds each edge not in s,
adjusts the coloring using ∗, and then sums up the states using appropriate signs. In the
case when an illegal color of 0 appears, due to the product X ∗ X = 0, the contribution
from that edge is counted as 0.
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1.4 This construction is equivalent to the cubic complex con-

struction.

At first sight, the two constructions look different because the cubic complex construction
yields only one cochain complex whereas the enhanced states construction gives rise to
a sequence of cochain complexes, one for each degree j. This can be easily solved by
splitting the cochain complex of the cubic complex construction into a sequence of cochain
complexes, one for each degree j. More precisely, let C = 0 → C0 → C1 → ... → Cn → 0 be
a graded cochain complex with a degree preserving differential. Decomposing elements of
each cochain group by degree yields Ci = ⊕

j�0
Ci,j . Since the differential is degree preserving,

the restriction to elements of degree j, i.e. 0 → C0,j → C1,j → ... → Cn,j → 0 is a cochain
complex denoted by Cj . It is clear that C is the direct sum of these cochain complexes.

We are now ready to see that for a fixed j, the cochain complexes obtained via the
two construction are isomorphic. For this section, denote the one obtained via the cubic
complex construction by Cj and the one obtained via the enhanced state construction by
C̃j .

Both cochain complexes have free cochain groups so it is enough to define the chain map
on basis elements. We will associate each enhanced state S = (s, c) of C̃i,j(G) to an unique
basis element in Ci,j(G) and show that this defines an isomorphism of cochain complexes.
First, s ⊆ E(G) naturally corresponds to the vertex α = (α1, · · · , αn) of the cube, where
αk = 1 if ek ∈ s and αk = 0 otherwise. The corresponding Z-module Cα(G) is obtained
by assigning a copy of M to each connected component of [G, s] and then taking tensor
product. The color c naturally corresponds to the basis element x1 ⊗ · · · ⊗ xk where x� is
the color associated to the �-th component of [G : s] .

It is not difficult to see that this defines an isomorphism on the cochain group that
commutes with the differentials. Therefore, the two complexes are isomorphic.

26



Chapter 2

Properties

In this section, we demonstrate some properties of our cohomology theory, as well as some
computational examples. The results of this section are covered in [HR04].

2.1 An Exact Sequence

The chromatic polynomial satisfies a well-known deletion-contraction rule: P (G, λ) =
P (G − e, λ) − P (G/e, λ). Here we show that our cohomology groups satisfy a naturally
constructed long exact sequence involving G, G− e , and G/e. Furthermore, by taking the
graded Euler-characteristic of the long exact sequence, we recover the deletion-contraction
rule. Thus our long exact sequence can be considered as a “categorification” of the deletion-
contraction rule.

� We explain the exact sequence in terms of the enhanced state sum approach. Let
G be a graph and e be an edge of G. We order the edges of G so that e is the last edge.
This induces natural orderings on G/e and on G− e by deleting e from the list. We define
homomorphisms αij : Ci−1,j(G/e) → Ci,j(G) and βij : Ci,j(G) → Ci,j(G − e). These two
maps will be abbreviated by α and β from now on. Let ve and we be the two vertices in
G connected by e. Intuitively, α expands ve by adding e, and β is the projection map. We
explain more details here.

� First, given an enhanced state S = (s, c) of G/e, let s̃ = s ∪ {e}. The number of
components of [G/e : s] and [G : s̃] are the same. In fact, the components of [G/e : s] and
the components of [G : s̃] are the same except the one containing ve where ve in G/e is
replaced by e in G. Thus, c automatically yields a coloring of components of [G : s̃], which
we denote by c̃. Let α(S) = (s̃, c̃). It is an enhanced state in Ci,j(G). Extend α linearly
and we obtain a homomorphism α : Ci−1,j(G/e) → Ci,j(G).

� Next, we define the map β : Ci,j(G) → Ci,j(G−e). Let S = (s, c) be an enhanced state
of G. If e 
∈ s, S is automatically an enhanced state of G−e and we define β(S) = S. If e ∈ s,
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we define β(S) = 0. Again, we extend β linearly to obtain the map β : Ci,j(G) → Ci,j(G−e).
One can sum up over j, and denote the maps by αi : Ci−1(G/e) → Ci(G) and βi :

Ci(G) → Ci(G − e). Again, they will be abbreviated by α and β. Both are degree
preserving maps since the index j is preserved.

Lemma 19. α and β are chain maps such that 0 → Ci−1,j(G/e) α→ Ci,j(G)
β→ Ci,j(G −

e) → 0 is a short exact sequence.

Proof. � First we show that α is a chain map. That is,

Ci−1,j(G/e) α→ Ci,j(G)

↓ dG/e ↓ dG

Ci,j(G/e) α→ Ci+1,j(G)

commutes. Let (s, c) be an enhanced state of G/e, we have

dG ◦ α((s, c)) = dG(s ∪ {e}, c̃) =
∑

ek∈E(G)−(s∪{e})
(−1)nG(ek) (s ∪ {e, ek}, (c̃)ek

)

where nG(ek) is the number of edges in s ∪ {e} that are ordered before ek in G.
We also have α ◦ dG/e((s, c)) = α

(∑
ek∈E(G/e)−s(−1)nG/e(ek)(s ∪ {ek}, cek

)
)

=
∑

ek∈E(G/e)−s(−1)nG/e(ek)(s ∪ {ek, e}, (̃cek
)) where nG/e(ek) is the number of edges in s

that are ordered before ek in G/e.
The two summations contain the same list of ek’s since E(G)− (s∪{e}) = E(G/e)− s.

It is also easy to see that (c̃)ek
= (̃cek

). Finally, nG(ek) = nG/e(ek) since e is ordered last.
It follows that dG ◦ α = α ◦ dG/e and therefore α is a chain map.

� Next, we show that β is a chain map by proving the commutativity of

Ci,j(G)
β→ Ci,j(G − e)

↓ dG ↓ dG−e

Ci+1,j(G)
β→ Ci+1,j(G − e)

Let S = (s, c) be an enhanced state of G.
� If e ∈ s, we have β(S) = 0 and thus dG−e ◦β(S) = 0. We also have dG(S) =

∑
ek∈E(G)−s

(−1)nG(ek)(s ∪ {ek}, cek
). Since e ∈ s ∪ {ek}, β ◦ dG(S) = 0.

� If e 
∈ s, we have dG−e ◦β(S) = dG−e(S) =
∑

ek∈E(G−e)−s

(−1)nG−e(ek)(s∪{ek}, cek
). We

also have dG(S) =
∑

ek∈E(G)−s

(−1)nG(ek)(s ∪ {ek}, cek
) = S1 + S2, where S1 =

∑
ek∈E(G)−(s∪{e})

(−1)nG(ek)(s ∪ {ek}, cek
) corresponds to the terms with ek 
= e, and S2 = (−1)nG(ek)(s ∪

{e}, ce) corresponds to the term ek = e. By our definition of β, β(S1) = S1, β(S2) = 0.
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Finally, nG(ek) = nG−e(ek) since e is ordered last, and it follows that dG−e◦β(S) = β◦dG(S)
as well in this case.

� Next, we prove the exactness. Each element in Ci−1,j(G/e) can be written as x =∑
nk(sk, ck) where nk 
= 0 and (sk, ck)’s are pairwise distinct enhanced states of G/e. It

is not hard to see that (s̃k, c̃k)’s are pairwise distinct enhanced states of G. Thus α(x) =∑
nk(s̃k, c̃k) 
= 0 in Ci−1,j(G). Hence ker α = 0. Next, Imα = Span{(s, c)|(s, c) is an

enhanced state of G and e ∈ s} = ker β. Finally, β is a projection map that maps onto
Ci,j(G − e).

The Zig-Zag lemma in homological algebra implies :

Theorem 20. Given a graph G and an edge e of G, for each j there is a long exact sequence
0 → H0,j(G)

β∗
→ H0,j(G − e)

γ∗
→ H0,j(G/e) α∗→ H1,j(G)

β∗
→ H1,j(G − e)

γ∗
→ H1,j(G/e) →

. . . → H i,j(G)
β∗
→ H i,j(G − e)

γ∗
→ H i,j(G/e) α∗→ H i+1,j(G) → . . .

If we sum over j, we have a degree preserving long exact sequence:
0 → H0(G)

β∗
→ H0(G − e)

γ∗
→ H0(G/e) α∗→ H1(G)

β∗
→ H1(G − e)

γ∗
→ H1(G/e) → . . . →

H i(G)
β∗
→ H i(G − e)

γ∗
→ H i(G/e) α∗→ H i+1(G) → . . .

Remark 21. It is useful to understand how the maps α∗, β∗, γ∗ act in an intuitive way. The
descriptions for α∗ and β∗ follow directly from our construction: α∗ expands the edge e, β∗

is the projection map. The description for γ∗, the connecting homomorphism, follows from
the standard diagram chasing argument in the zig-zag lemma and the result is as follows.
For each cycle z in Ci,j(G − e) represented by the chain

∑
nk(sk, ck), γ∗(z) is represented

by the chain (−1)i
∑

nk(sk∪{e}/e, (ck)e), where sk∪{e}/e is the subset of E(G/e) obtained
by adding e to sk and then contracting e to ve, (ck)e is the coloring defined in section 1.3.

Remark 22. It can sometimes be convenient to allow negative heights for cohomology
groups with the conventions that for any graph G, H i(G) = 0 if i < 0 and α∗, β∗ and
γ∗ = 0 when their domain has negative height. Note that the previous exact sequence
remains exact of we add these groups with negative heights. The degree preserving long
exact sequence becomes

· · · → H−1(G)
β∗
→ H−1(G − e)

γ∗
→ H−1(G/e) α∗→ H0(G)

β∗
→ H0(G − e)

γ∗
→ H0(G/e) α∗→

H1(G)
β∗
→ H1(G − e)

γ∗
→ H1(G/e) → . . . → H i(G)

β∗
→ H i(G − e)

γ∗
→ H i(G/e) α∗→ H i+1(G) →

. . .

� We now check that by taking the graded Euler-characteristic of the long exact se-
quence, we recover the deletion-contraction rule as announced. Thus our long exact se-
quence can be considered as a categorification of the deletion-contraction rule.

The exact sequence for (G, e) is:
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0 → H0(G)
β∗
→ H0(G − e)

γ∗
→ H0(G/e) α∗→ H1(G)

β∗
→ H1(G − e)

γ∗
→ H1(G/e) → . . . →

H i(G)
β∗
→ H i(G − e)

γ∗
→ H i(G/e) α∗→ H i+1(G) → . . .

First note that since the sequence is exact, its graded Euler-characteristic is zero. This
can be seen because the graded Euler characteristic is the sum of the (regular) Euler charac-
teristics in each degree j with a factor qj and we know that the (regular) Euler-characteristic
of an exact sequence is zero.

Now, if we take the graded Euler-characteristic of the exact sequence for (G, e), we get
q dimH0(G)−q dimH0(G−e)+q dim H0(G/e)−q dimH1(G)+q dimH1(G−e)+ · · ·+

(−1)iq dim H i(G) + (−1)i+1q dimH i(G − e) + (−1)iq dimH i(G/e) + · · · = 0
Hence,

∑
i(−1)iq dim H i(G) +

∑
i(−1)i+1q dim H i(G− e) +

∑
i(−1)iq dimH i(G/e) = 0

i.e. PG(1 + q) − PG−e(1 + q) + PG/e(1 + q) = 0, which is the deletion-contraction rule for
the chromatic polynomial.

A detailed example showing how to compute the cohomology groups of the complete
graph on three vertices K3 using the exact sequence is provided in Section (6.1).

2.2 Graphs with loops

Proposition 23. If the graph has a loop then all the cohomology groups are trivial.

Proof. Let G be a graph with a loop �. The exact sequence for (G, �) is
0 → H0(G) → H0(G − �)

γ∗
→ H0(G/�) → H1(G) → H1(G − �)

γ∗
→ H1(G/�) → . . . →

H i(G) → H i(G − �)
γ∗
→ H i(G/�) → H i+1(G) → . . .

Using our description of the connecting homomorphism γ∗ in Remark (21), we get that
the map H i(G − �)

γ∗
→ H i(G/�) is (−1)iid. Therefore, H i(G) = 0 for all i.

2.3 Graphs with multiple edges

Proposition 24. The cohomology group are unchanged if all the multiple edges of a graph
are replaced by single edges.

Proof. Assume that in some graph G the edges e1 and e2 connect the same vertices. In
G/e2, e1 becomes a loop so as observed earlier, H i(G/e2) = 0 for all i. It follows from the
long exact sequence that H i(G−e2) and H i(G) are isomorphic groups. One can repeat the
process until there is at most one edge connecting two given vertices without changing the
cohomology groups.
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2.4 Cohomology groups of the disjoint union of two graphs

Let G1 and G2 be two graphs and consider their disjoint union G1  G2. On the cochain
complex level, we have C(G1  G2) = C(G1) ⊗ C(G2).

Theorem 25. For each i ∈ N, we have :

H i(G1  G2) ∼=
[

⊕
p+q=i

Hp(G1) ⊗ Hq(G2)
]
⊕

[
⊕

p+q=i+1
Hp(G1) ∗ Hq(G2)

]
where * denotes the torsion product of two abelian groups.
If we decompose the groups by degree, we get that for each k, i ∈ N, we have :

H i,j(G1  G2) ∼=

 ⊕
p+q=is+t=j

Hp,s(G1) ⊗ Hq,t(G2)

 ⊕

 ⊕
p+q=i+1s+t=j

Hp,s(G1) ∗ Hq,t(G2)


Proof. This is a corollary of Künneth’s theorem, since the chain complexes C(G1) and C(G2)
are free.

Details about the Künneth’s theorem and the torsion product can be found in J.
Munkres’s algebraic topology book [M84], on pages 342 and 327 respectively. Basically,
the Künneth’s theorem tells you that some groups built from the cohomology groups via
direct sums and tensor products are related by an exact sequence and that this sequence
splits when the chains complexes are free.

Corollary 26. The Poincaré polynomials are multiplicative under disjoint union i.e.
RG1	G2(t, q) = RG1(t, q) · RG2(t, q)

Theorem (25) also implies

Example 27. Disjoint union with the one vertex graph: Hk(G •) ∼= Hk(G)⊗ (Z⊕ZX).

2.5 Adding or contracting a pendant edge

An edge in a graph is called a pendant edge if the degree of one of its endpoints is one. Let
G be a graph and e be a pendant edge of G. Let G/e be the graph obtained by contracting
e to a point. We will study the relation between the cohomology groups of G and G/e.

Recall that the notation {.} denotes the degree shift in graded Z-modules. Its meaning
is that, for a given graded Z -module M , M{�} denotes the Z-module isomorphic to M

with the degree of each homogeneous element being shifted up by �. For example, Z{1}
denotes an abelian group generated by one element of degree one and Z3{2} denotes a rank
three free abelian group whose elements are of degree two.

We have
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Theorem 28. Let e be a pendant edge in a graph G. G can be represented by S , where

the S stands for “something”. For each i, H i( S ) ∼= H i( S ){1} ∼= H i( S )⊗Z{1}.

Proof. Consider the operations of contracting and deleting e in G. The graph G/e is S
and G − e is S where the isolated vertex is denoted v. The exact sequence on (G, e)

is 0 → H0( S )
β∗
→ H0( S )

γ∗
→ H0( S ) α∗→ · · · α∗→ H i( S )

β∗
→ H i( S )

γ∗
→

H i( S ) α∗→ · · ·
Thus we need to understand the map

H i( S )
γ∗
→ H i( S )

By Theorem (25),

H i( S ) ∼= H i( S ) ⊗ [Z ⊕ Z{1}] ∼= H i( S ) ⊕
[
H i( S ) ⊗ Z{1}

]
by a natural isomorphism h∗, which is induced by the isomorphism h described as follows.

h : Ci( S ) → Ci( S ) ⊕
[
Ci( S ) ⊗ Z{1}

]
Each enhanced state S in Ci( S ) either assigns the color 1 or the color X to v.

If it assigns 1 to v, h sends S to (S1, 0) where S1 is the “restriction” of S to S . If it
assigns X to v, h sends S to (0, S1 ⊗ q). This extends to a degree preserving isomorphism
on cochain groups and induces the isomorphism h∗ on cohomology groups.

We therefore will identify H i( S ) with H i( S ) ⊕
[
H i( S ) ⊗ Z{1}

]
.

Claim: (−1)iγ∗◦(h∗)−1 : H i( S )⊕
[
H i( S ) ⊗ Z{1}

]
→ H i( S ) satisfies (−1)iγ∗◦

(h∗)−1(x, 0) = x for all x ∈ H i( S ).
Proof of Claim.

Let x be in H i( S ). x is the equivalence class of a sum of terms of the form (s, c)

in S . Under the map (h∗)−1, each of these terms is “extended” to be an element in

Ci( S ) by adding v to
[

S : s
]

and assigning it the color 1.

The map γ∗ is described in Remark (21). Let y be in H i( S ). y is the equivalence

class of a sum of terms of the form (s, c) in H i( S ). Basically, for each each (s, c),
(−1)iγ∗ adds the edge e, adjusts the colorings, then contracts e to a point. Hence applying
(h∗)−1 then (−1)iγ∗ yields the original graph S . The color for each state in x remains
the same since v is colored by 1 and multiplication by 1 is the identity map. This proves
that (−1)iγ∗ ◦ (h∗)−1(x, 0) = x.

The claim implies that γ∗ is onto for each i. Thus the above long exact sequence becomes
a collection of short exact sequences.
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0 → H i( S )
β∗
→ H i( S )

γ∗
→ H i( S ) → 0 (2.1)

After passing to the isomorphism h∗, the exact sequence becomes

0 → H i( S ) −→ H i( S ) ⊕
[
H i( S ) ⊗ Z{1}

]
−→ H i( S ) → 0

The next lemma implies that H i( S ) ∼= H i( S ) ⊗ Z{1}.

Lemma 29. Let A and B be graded abelian groups, and p : A ⊕ B → A be a degree
preserving projection with p(a, 0) = a for all a ∈ A. Then ker p ∼= B via a degree preserving
isomorphism.

Proof. For each b ∈ B, let ab = p(0, b) ∈ A. Then p(−ab, b) = 0 and therefore (−ab, b) ∈
ker p. Define f(b) = (−ab, b). It is a standard exercise to verify that f is a degree preserving
isomorphism from B to ker p.

It can be convenient to actually know a set of generators of the cohomology groups of
a graph rather than knowing only the isomorphism types of the cohomology groups, for
instance when we want to use the exact sequence. The next proposition explains how to
produce those in this specific case. It is a corollary of the previous result, we just need to
write explicitly what p and f are, namely, p = (−1)iγ∗ and f(x⊗X) = x⊗X−(−1)iγ∗(x⊗
X) ⊗ 1.

Corollary 30. Let G be a graph with a pendant edge. G can be represented by S ,

where the S stands for “something”. If we know a set of generators of H i( S ), applying

the following isomorphisms to a set of generators of H i( S ) produces a set of generators

of H i( S ).

H i
(

S
)

f→ ker (γ∗)
(β̄∗)−1

→ H i
(

S
)

x �→ x ⊗ X − (−1)iγ∗(x ⊗ X) ⊗ 1︸ ︷︷ ︸
y

�→ y seen in H i
(

S
)

In the above definition of y, the right-most X in x ⊗ X means that the isolated vertex
v is assigned the value X (similar interpretation for the other term).
The isomorphism can be visualized the following way. x is a sum of terms of the form

u. This picture means that the component that includes this vertex has been assigned

the value u ∈ M. Such a term becomes u uX

X 1
- under the action of f , where

the element of M written close to a vertex indicates the label that has been assigned to
this component.
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We have a similar algorithm when we extend our construction to a larger class of alge-
bras, as explained in remark (48).

The method is illustrated in the following example:
In the array that keeps track of the cohomology groups, see Figure (2.1), the numbers

without brackets indicate the number of copies of Z while the numbers with brackets indicate
the number of copies of Z2.

For instance, in the case of the triangle K3 illustrated in Figure (2.1), the first column
means H0(K3) ∼= Z{3} (= H0,3(K3), elements of degree 3). The second column means
H1,1(K3) ∼= Z{1} (elements of degree 1 in H1) and H1,2(K3) ∼= Z2{2} (elements of degree
2 in H1) i.e. H1(K3) ∼= Z{1} ⊕ Z2{2}.

0

0 1

1

2

3

i (height)

j (degree)

1

1

[1]

-1 XH  (          ) = <                        >     <          >H  (          ) = <                        >     <          >1

< 2            >< 2            >

H  (          ) = <           >H  (          ) = <           >0

1X X
X

X

X

X

X
X

Figure 2.1: K3 summary when the algebra is Z[X]/(X2)

We can use the method described above to produce the generators of the cohomology
groups of a triangle to which a pendant edge has been added and the results are shown in
Figure (2.2).

2.6 Trees, circuits graphs

We describe the cohomology groups for several classes of graphs.

Example 31. Let N1 be the graph with 1 vertex and no edge. We have PN1 = λ = 1 + q.
The only enhanced states of N1 are (∅, 1) and (∅, X), which generate C0(N1). It follows
that H0(N1) ∼= Z ⊕ Z{1}, and H i(N1) = 0 for all i 
= 0.

Example 32. More generally, the graph with p vertices and no edges is called the null
graph of order p and denoted by Np. A similar argument implies

H i(Np) ∼=
{

[Z ⊕ Z{1}]⊗p if i = 0
0 if i 
= 0
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0

0 1

1

2

3

i (height)

j (degree)

1

1

[1]

H     (             ) = <                -                  +                 > H     (             ) = <                -                  +                 > 1,2

H  (             ) = <                >H  (             ) = <                >0
X

X X X

4

< 2                 >< 2                 >X X X

X 1 X 1 X XX X 1

H     (             ) = <                 > H     (             ) = <                 > 
1,3 X X X

Figure 2.2: K3 with a pendant edge added, summary when the algebra is Z[X]/(X2)

This also follows from the Künneth type formula in Theorem (25).

Example 33. Let G = Tn, a tree with n edges. We can obtain G by starting from a one
point graph, and then adding pendant edges successively. Thus Theorem (28) and Example
(31) imply

H0(Tn) ∼= [Z ⊕ Z{1}]{n} ∼= Z{n} ⊕ Z{n + 1}, H i(Tn) = 0 for i 
= 0.

A basis for H0(Tn) can be described as follows. Let V (Tn) = {v0, v1, · · · , vn} be the set
of vertices of Tn. Let σ : V (Tn) → {±1} be an assignment of ±1 to the vertices of Tn such
that vertices that are adjacent in G always have opposite signs. It is easy to see that such a
σ exists (e.g. let σ(v) = (−1)d(v0,v) where d(v0, v) is the number of edges in Tn that connect
v0 to v). Furthermore, σ is unique up to multiplication by −1. For each k = 0, 1, · · · , n,
let Sk = (∅, ck) be the enhanced state in which s = ∅ and ci assigns 1 to vk and X to vj

for each j 
= k. Let ε1 = Σn
k=0σ(vk)Sk ∈ C0(Tn), and let ε2 = (∅, c) be the enhanced state

with s = ∅ and c assigns X to each vertex vj for j = 0, · · · , n. Then ε1 is a generator for
Z{n} and ε2 is a generator for Z{n + 1} in H0(Tn). An example is shown below.

Example 34. Circuit graph with n edges

Let G = Cn, the circuit graph with n edges, also known as the cycle graph.
� If n = 1, C1 is the graph with one vertex and one loop. By Proposition (23),

H i(C1) = 0 for each i.
� If n = 2, C2 is the graph with two vertices connected by two parallel edges. By

Proposition (24), H i(C2) ∼= H i(T1) ∼=
{

(Z{1} ⊕ Z{2}) if i = 0
0 if i 
= 0

� Next, let us assume n > 2.
(In fact, the following method also holds for n = 2 but the above method is a much

easier way to get the result).
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  G    =   σ   =

1 X

X

X
+

+

+ +-

  ε   =1

  ε   =
2

X

X

XX

  -
1X

X

X 1X

X

X
+

1

X XX

A dotted line indicates a place with no edge 
but where there was an edge in G.

Figure 2.3: An example of basis for trees

� We label the vertices of Cn by v1, · · · , vn monotonically so that each vk is adjacent
to vk+1 (here vn+1 = v1 ). Let e be the edge v1vn. Then G − e is the tree with n vertices
v1, · · · , vn connected by a line segment running from v1 to vn, and G/e is the circuit graph
Cn−1 with vertices v1, · · · , vn−1. The exact sequence on (G, e) gives

· · · → H i−1(G) → H i−1(G − e) → H i−1(G/e) → H i(G) → H i(G − e) → · · ·

For i � 2, H i−1(G − e) = H i(G − e) = 0 by Example (33). Thus H i(G) ∼= H i−1(G/e), i.e.
H i(Cn) ∼= H i−1(Cn−1) provided if n � 2 and i � 2. Applying this equation repeatedly, we
have

H i(Cn) ∼=
{

H1(Cn−i+1) if i � n

H i−n+1(C1) = 0 if i � n.

Thus it suffices to determine H1(Cn) and H0(Cn) for all n. Again, we examine part of
the long exact sequence:

0 → H0(G)
β∗
→ H0(G − e)

γ∗
→ H0(G/e) α∗→ H1(G) → 0

Here, the last group H1(G − e) is 0 because G − e is a tree. This exact sequence implies
that

H0(G) ∼= ker γ∗, H1(G) ∼= H0(G/e)/ ker α∗ = H0(G/e)/Imγ∗

� Thus we need to understand the map γ∗ : H0(G − e) → H0(G/e).
This map can be described as follows. An x in H0(G − e) is the equivalence class of a

sum of terms of the form (∅, c) in C0(G − e). Each of these enhanced state S = (∅, c) is
just a coloring of v1, · · · , vn by 1 or X. Under the map γ∗, S = (∅, c) is changed to (∅, γ(c))
where γ(c) is the coloring on V (G/e) defined by γ(c)(vk) = c(vk) for each k 
= 1, n, and
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γ(c)(v1) = c(v1) ∗ c(vn). Basically, for each each (s, c), γ∗ adds the edge e, adjusts the
colorings, then contracts e to a point and multiplies the result by (−1)i.

By Example (33), H0(G− e) ∼= Z{n− 1}⊕Z{n} where Z{n− 1} is generated by ε1 and
Z{n} is generated by ε2. It is easy to see that γ∗(ε2) = 0 since all vertices are colored by X in
ε2. As for γ∗(ε1), it will depend on the parity of n. We have ε1 = S1−S2+ · · ·+(−1)n−1Sn.
For each k 
= 1, n, γ∗(Sk) = 0 since both v1 and vn are labeled by X under Sk. For k = 1
and k = n, γ∗(S1) = γ∗(Sn) = ε′2 where ε′2 is the state of C0(G/e) that labels every vertex
by X. Thus γ∗(ε1) = 0 if n is even, and γ(ε2) = 2ε′2 if n is odd.

It follows that ker γ∗ = Span{ε1, ε2} if n is even, and ker γ∗ = Span{ε2} if n is odd.
Therefore

H0(Cn) ∼=
{

Z{n} ⊕ Z{n − 1} if n is even and n � 2
Z{n} if n is odd and n > 2.

� Next, we determine H1(Cn) using the same exact sequence. We follow the discussion
above. If n is even, γ∗ = 0, and therefore H1(G) ∼= H0(G/e) ∼= Z{n − 1}. If n is odd,
Imγ∗ = 2Z{n − 1} in H0(G/e). Therefore H1(Cn) ∼= H0(G/e)/ Imγ∗ ∼= Z{n − 1} ⊕ Z{n −
2}/2Z{n − 1} ∼= Z{n − 2} ⊕ Z2{n − 1}.

As a summary, we have

For i > 0, H i(Cn) ∼=


Z2{n − i} ⊕ Z{n − i − 1} if n − i � 2 and is even
Z{n − i} if n − i � 2 and is odd
0 if n − i � 1.

For i = 0, H0(Cn) ∼=


Z{n} ⊕ Z{n − 1} if n is even and n � 2
Z{n} if n is odd and n � 2
0 if n = 1.

Computational results 35. The following table illustrate our computational result (up
to n = 6 and i = 4) for circuit graphs. We denote Pn the circuit graph on n vertices where
P stands for polygon because the notation Cn has already been used for the chain groups.

n\i H0 H1 H2 H3 H4

P1 0 0 0 0 0

P2 Z{2} ⊕ Z{1} 0 0 0 0

P3 Z{3} Z2{2} ⊕ Z{1} 0 0 0

P4 Z{4} ⊕ Z{3} Z{3} Z2{2} ⊕ Z{1} 0 0

P5 Z{5} Z2{4} ⊕ Z{3} Z{3} Z2{2} ⊕ Z{1} 0

P6 Z{6} ⊕ Z{5} Z{5} Z2{4} ⊕ Z{3} Z{3} Z2{2} ⊕ Z{1}

We note that, for all n � 3, H∗(Cn) contains torsion. We will analyze such phenomenon
for a general graph later on.
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2.7 Vanishing theorem

Theorems (36) and (37) indicate which cohomology groups may be non-trivial.

Theorem 36. Let G be a graph with p vertices, p ≥ 2.
If i > p − 2, then H i(G) = 0.

This result was first stated by Michael and Sergei Chmutov.
Note that we have to exclude the case p = 1 (or the case i = 0) otherwise the graph N1

made of one isolated vertex would give us a contradiction since H0(N1) 
= 0 but i = 0 > 1−2.

Proof. Let n be the number of edges of G. We are going to prove this result by induction
on n.

� If n = 0, G is the null graph on p vertices. We have already shown that H i(Np) = 0
unless i = 0, so the induction hypothesis is satisfied.

� Let n � 1. Assume the induction hypothesis holds for n − 1.
� Case 1: p > 2
Assume i > p − 2. We need to show that H i(G) = 0.

The exact sequence on (G, e) gives

· · · → H i−1(G/e) → H i(G) → H i(G − e) → · · ·

Since G−e has one less edge than G and p vertices with p ≥ 2, the induction hypothesis
applies and H i(G − e) = 0.

Also, i > p− 2 implies i− 1 > (p− 1)− 2. Since G/e has one less edge than G and p− 1
vertices with p− 1 ≥ 2, we can apply the induction hypothesis and we get H i−1(G/e) = 0.
Substituting these results in the exact sequence proves that H i(G) = 0.

� Case 2: p = 2
Either G has a loop or G has no loop. If G has a loop then all the cohomology groups

are trivial so the induction hypothesis is satisfied. If G has no loop, G is a graph with two
vertices connected by n edges. Since we can delete multiple edges without changing the
cohomology groups, G has the same cohomology groups as a tree with one edge so all the
cohomology groups are trivial except H0(G) so, again, the induction hypothesis is satisfied.

2.8 Thickness of the cohomology

Theorem 37. Let G be a graph with p vertices and µ components.
Then H i,j(G) = 0 unless p − µ � i + j � p.
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This extends the corresponding result for connected graphs that was first stated by
Michael and Sergei Chmutov.

Before proving the theorem, we would like to illustrate its meaning by two examples. In
short, the theorem says that the cohomology is concentrated along µ + 1 diagonals in the
case of a graph with µ components. The “µ + 1 diagonals” language refers to the way of
keeping track of the cohomology groups illustrated in Figure (2.4). In the array that keeps
track of the cohomology groups, the numbers without brackets indicate the number of copies
of Z while the numbers with brackets indicate the number of copies of Z2. For instance,
in the case of the cyclic graph P6 (see figure (2.4) below), the [1] in position i = 2, j = 4
means H2,4(P6) ∼= Z2{4} and the 1 in position i = 2, j = means H2,3(P6) ∼= Z{3}, so
H2(P6) ∼= Z{3} ⊕ Z2{4}.

For a connected graph, the theorem says that the cohomology is always concentrated
along two diagonals, which are i + j = p = 6 and i + j = p− 1 = 5 in the particular case of
the graph P6.

This example also illustrates that all the non trivial cohomology groups have height i

such that 0 � i � 6 − 2 as predicted by theorem (36).

0

0 1

1

2

3

i (height)

j (degree)

1

1

[1]

4

2 3 4

5

6

1

1 1

1

[1]G = C   =6

i+j= 6i+j = 5

Figure 2.4: P6 summary when the algebra is Z[X]/(X2)

The case of the graph which is the disjoint union of two triangles and an isolated vertex
is illustrated in Figure (2.5) below. This graph has three components and the cohomology
groups are organized along four diagonals.

Proof. Let n be the number of edges of G. We are going to prove this result by induction
on n.

� If n = 0, G is the null graph on p vertices. We have already shown that H0(Np) =
[Z ⊕ Z{1}]⊗p. Expanding this tensor product will yield groups with degrees ranging from
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Figure 2.5: Two triangles and an isolated vertex, summary when the algebra is Z[X]/(X2)

0 to p. In other words, p− µ = 0 � 0 + j � p. All the other cohomology groups are trivial,
so the induction hypothesis is satisfied.

� Assume the induction hypothesis holds for all n′ < n.
If G has a loop, the induction hypothesis is satisfied, so we can assume from now on

that G has no loop.
If G has multiple edges, the graph G′ obtained from G by replacing multiple edges by

single edges has fewer edges so we can use the induction hypothesis for G′. Since G and G′

have the same cohomology groups, the same number of components and the same number
of vertices, this proves the result for G. From now on in this proof, we assume that G has
no loop and no multiple edges.

Case 1: G is a forest
Assume G is a forest made of µ trees for a total of n edges. We denote such a forest

Fµ,n. It is clear that Fµ,n has µ + n vertices.
The cohomology groups of Fµ,n are obtained from the cohomology groups of Nµ, the

graph with µ vertices and no edges, by adding n pendant edges. Therefore, the cohomology
groups are trivial except for H0(Fµ,n) ∼= [Z ⊕ Z{1}]⊗µ{n}. Expanding the tensor product,
we get groups of the form Z{j} with 0 � j � µ. If we now increase the degrees by n, we
get groups of the form Z{j} with n � j � µ+n. Substituting n = p−µ in the above yields
p − µ � 0 + j � p, so the assumption hypothesis is satisfied (without using induction).

Case 2: G is a not forest
Since we assumed that G has no loop and no multiple edges, G is a not forest means it
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contains a cycle of order � 3. Let e be an edge on this cycle. The edge e is not an isthmus
so G− e also has µ components. Of course, G/e has µ components no matter whether e is
not an isthmus or not.

The exact sequence on (G, e) gives

· · · → H i−1,j(G) → H i−1,j(G − e) → H i−1,j(G/e) → H i,j(G) → H i,j(G − e) → · · ·

Note that we don’t have to worry about having i−1 ≥ 0 since we allow negative heights
for cohomology groups as explained in Remark (22).

In the exact sequence all the graph have µ components as observed earlier. Also note
that since G − e and G/e have one less edge than G, the induction hypothesis applies to
them. For G−e, the induction hypothesis says that H i,j(G−e) = 0 unless p−µ � i+j � p.
For G/e, the induction hypothesis says that H i,j(G/e) = 0 unless p− 1−µ � i+ j � p− 1.
We use these facts to show that H i,j(G) = 0 whenever i + j > p or i + j < p − µ.

� Assume that i + j > p. We need to show that H i,j(G) = 0.
The exact sequence on (G, e) gives

· · · → H i−1,j(G/e) → H i,j(G) → H i,j(G − e) → · · ·

i + j > p so H i,j(G − e) = 0. Also i + j > p implies i − 1 + j > p − 1 so H i−1,j(G/e) = 0.
Therefore the sequence 0 → H i,j(G) → 0 is exact so H i,j(G) = 0.

� Assume that i + j < p − µ. We need to show that H i,j(G) = 0
The exact sequence on (G, e) gives

· · · → H i−1,j(G/e) → Hk,j(G) → H i,j(G − e) → · · ·
p − µ < i + j so H i,j(G − e) = 0. Also i + j < p − µ implies (i − 1) + j < (p − 1) − µ so
H i−1,j(G/e) = 0. Therefore the sequence 0 → H i,j(G) → 0 is exact so H i,j(G) = 0.

2.9 0-cohomology theorem

Theorem 38. If G is a loopless connected graph with p vertices, then

H0(G) ∼=
{

Z{p} ⊕ Z{p − 1} for bipartite graphs,
Z{p} for non-bipartite graphs

This result was discovered independently by Michael and Sergei Chmutov.
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Proof. Let G be a loopless connected graph with p vertices. Since G is connected, by
Theorem (37), we know that among the H0,j(G) groups, the only ones that might not be
trivial are the ones corresponding to degrees p − 1 and p.

� degree p

A basis element for C0,p(G) has p components and degree p. So there is only one basis
element, the one for which all the vertices are assigned the value X. Let’s denote it b. Since
there are no loops, adding an edge will connect two vertices with X and therefore the image
of b under the differential is zero. Hence H0,p(G) =< b >∼= Z{p}

� degree p − 1
� The basis elements of C0,p−1(G) have p components and degree p − 1 which means

that all vertices are assigned the value X except one, say v, which is assigned the value 1.
We denote such a basis element by bv.

We also need to describe the basis elements of the target space C1,p−1(G). First, note
that they have p − 1 components because, since there are no loops, adding one edge au-
tomatically decreases the number of components by one. Therefore for degree reasons, all
the components are assigned the value X. The basis element for which the present edge is
e and with X assigned to all the components is denoted ae. We have

d(bv) =
∑

e=vw∈E(G)

ae

because adding an edge that doesn’t have v as one of its vertices will connect two vertices
with X and therefore yield zero.

� Claim: Let x =
∑

v∈V (G) λvbv ∈ ker d0 = H0(G). If some vertices v and w (not
necessarily distinct) are connected by a walk of � edges, then the corresponding coefficients
in x satisfy λv = (−1)�λw.
Proof of Claim. The proof is by induction on �.

� � = 1 means that we are talking about adjacent vertices.
d(x) = 0 =

∑
v∈V (G) λv

∑
e=vw∈E(G) ae =

∑
e=vw∈E(G)(λv + λw)ae because by assump-

tion, there are no loops so each edge e = vw has two distinct endpoints v and w. Thus,
λv = −λw for all adjacent vertices v, w ∈ V (G).

� Assume the result holds for �. Let v and w be vertices that are connected by a walk of
� + 1 edges. Denote by u the one before last vertex in this walk from v to w. The induced
walk from v to u has length � so by induction hypothesis, λv = (−1)�λu. Using the first step
of the induction, we get λu = −λw. These two results together show that λv = (−1)�+1λw.

� Case 1: G is bipartite:
� Since G is bipartite, its vertices can be partitioned into two sets Y and Z such that

each edge consists of one vertex from each set. Let b =
∑

v∈Y bv −
∑

w∈Z bw. Applying the
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per-edge map that adds the edge e = vw where v ∈ Y and w ∈ Z will yield ae − ae = 0.
This holds for all per-edge map so d0,p−1(b) = 0 and < b >⊆ H0,p−1(G).

� Let x =
∑

λubu ∈ ker d0,p−1 = H0,p−1(G). Without loss of generality, we can assume
that at least one of the vertices is in Y . Denote v such a vertex. For any vertex w, since G

is bipartite and connected, if w is in Y , there is an even v, w path so by the claim, λv = λw.
By the claim again, if w is in Z, there is an odd v, w path so by the claim, λv = −λw.
Hence, x = λvb so H0,p−1(G) ⊆< b > .

� Combining these results yields H0,p−1(G) =< b >∼= Z{p − 1}.

� Case 2: G is not bipartite:
Let x =

∑
λvbv ∈ ker d0,p−1 = H0,p−1(G). A well-known result of graph theory says

that a non-bipartite graph has an odd cycle. Pick one vertex, say v0, on this cycle. There
is a path from v0 to itsself with an odd number of edges. By the claim, it means that
λv0 = −λv0 so λv0 = 0. The claim also implies that all the λv’s are equal or opposite to λv0

so all are zero. Hence, x = 0 and H0,p−1(G) = kerd0,p−1 = 0
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Chapter 3

Extension of this construction to

other algebras

Khovanov constructed a graded cohomology theory for classical links and showed it yields
the Jones polynomial by taking the graded Euler characteristic. In Chapter (1) we con-
structed a graded cohomology theory for graphs and showed it yields the Chromatic poly-
nomial by taking the graded Euler characteristic. Both constructions depend on a given
graded algebra (or bi-algebra for links) which is the building block for the cochain groups
in the cochain complex. However, the amounts of choices of algebras are quite different. In
the case of links, the choices are quite limited due to the requirement of invariance under
Redemeister moves. In the case of graphs, the choices are abundant. The algebra used in
our cohomology for graphs, Z[X]/(X2), is the simplest natural choice. Note that we started
our construction with Z[X]/(X2) seen as a Z-module but then we equipped it with a mul-
tiplication m when we defined the differential that turned it into a commutative Z-algebra.
The purpose of this chapter is to show that our construction can be extended to a large
class of algebras.

In section (3.1), we explain the definition of the cochain complex, and show that the
Euler characteristic of the cohomology groups is equal to the chromatic polynomial of the
graph evaluated at λ = q dimA where q dimA is the graded dimension of the algebra A.
In section (3.1), we discuss some basic properties of our cohomology groups. In particular,
we construct a long exact sequence which can be considered as a categorification of the
deletion-contraction rule of the chromatic polynomial. In section (3.1), we show some
computational examples. In particular, we note the existence of an order 3 torsion in
our cohomology groups, when the algebra is Z[X]/(X3). This is in stark contrast with
the cohomology groups in our cohomology for graphs when Z[X]/(X2) and in Khovanov
cohomology for links, where the computations suggest no odd torsion can occur [S04].

The results of this section are covered in [HR05]. We wish to thank Mikhail Khovanov
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for his suggestions and comments.

3.1 The Construction

Definitions: Graded algebra, graded dimension

All the algebras A that we will consider here will be algebras over Z1 with a unit 1A.

Definition 39. A graded Z-algebra A is a Z-algebra with direct sum decomposition A =
⊕∞

j=0Aj into Z-submodules such that aiaj ∈ Ai+j for all ai ∈ Ai and aj ∈ Aj. The elements
of Aj are called homogeneous elements of degree j.

From now on, all algebras A will satisfy the following conditions :

Assumptions 40. A = ⊕∞
j=0Aj is a commutative graded algebra over Z such that each Aj,

the set of degree j homogeneous elements, is a free Z-module of finite rank. In particular, A
is a graded Z-module whose graded dimension is the power series q dimA =

∑
j qj rankAj.

Note that these assumptions can sometimes be relaxed. For instance, the construction
can still be made even if there is no identity or if the Ai’s are not free.

The construction

Let A be an algebra satisfying Assumptions (40). The construction is similar to the one in
Chapter (1), the difference being that the algebra Z[X]/(X2) is replaced by A.

Let G be a graph and E = E(G) be the edge set of G. Let n = |E| be the cardinality of
E. We fix an ordering on E and denote the edges by e1, · · · , en. Consider the n-dimensional
cube {0, 1}E = {0, 1}n. Each vertex α of this cube corresponds to a subset s = sα of E,
where ei ∈ sα if and only if αi = 1. The height |α| of α, is defined by |α| =

∑
αi, which is

also equal to the number of edges in sα.

The cochain groups
For each vertex α of the cube, we associate the graded Z-module Cα(G) as follows. Consider
[G : s], the graph with vertex set V (G) and edge set s. We assign a copy of A to each
component of [G : s] and then take tensor product over the components. Let Cα(G) be the
resulting graded Z-module, with the induced grading from A. Therefore, Cα(G) ∼= A⊗k

where k is the number of components of [G : s]. Similarly to our previous construction of
the cochain groups when A = Z1 ⊕ ZX, we define the ith chain Z-module to be

Ci(G) := ⊕|α|=iCα(G).
1Of course, algebras over Z are nothing but rings but we prefer to think of them as Z-algebras rather

than rings because most results can be extended to R-algebras, for a commutative ring R with 1. Similarly,

we talk about Z-modules rather than abelian groups because this setting allows easier generalization to

R-modules. More about this generalization from Z to R will be in [HR05].
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Keep in mind that Ci(G) depends on the algebra A. Thus one may want to denote it
by Ci

A(G). However, we will omit the letter A unless there is an ambiguity. Also, we
sometimes interchange the notions α and s. Thus Cα(G) is sometimes denoted by Cs(G).
This certainly should not cause any confusion.

The differential
To define the differential maps di, we need to make use of the edges of the cube {0, 1}E .
Each edge ξ of {0, 1}E can be labeled by a sequence in {0, 1, ∗}E with exactly one ∗. The
tail of the edge is obtained by setting ∗ = 0 and the head is obtained by setting ∗ = 1. The
height |ξ| is defined to be the height of its tail, which is also equal to the number of 1’s in
ξ.

Given an edge ξ of the cube, let α1 be its tail and α2 be its head. The per-edge map
dξ : Cα1(G) → Cα2(G) is the Z-linear map defined as follows. For j = 1 and 2, the Z-
module Cαj (G) = A⊗kj where kj is the number of connected components of [G : sj ] (here
sj = sαj ). Let e be the edge with s2 = s1 ∪ {e}.

� If e joins a component of [G : s1] to itself, then k1 = k2 and the components of [G : s1]
and the components of [G : s2] naturally correspond to each other. We let dξ to be the
identity map.

� If e joins two different components of [G : s1], say E1 to E2 where E1, E2, · · · , Ek1

are the components of [G : s1], then k2 = k1 − 1 and the components of [G : s2] are
E1 ∪ E2 ∪ {e}, E3, · · · , Ek1 . We define dξ to be the identity map on the tensor factors
coming from E3, · · · , Ek1 , and dξ on the remaining tensor factors to be the multiplication
map A⊗A → A sending x ⊗ y to xy.

Now, we define the differential di : Ci(G) → Ci+1(G) by di =
∑

|ξ|=r(−1)ξdξ, where

(−1)ξ = (−1)
∑

i<i0
ξi where i0 is the position of the star in ξ, i.e.

∑
i<i0

ξi is the number of
1’s before ∗ in ξ.

Theorem 41. Let G be a finite graph, and let A be an algebra satisfying Assumptions (40).
Then
(a) 0 → C0(G) d0→ C1(G) d1→ · · · dn−1→ Cn(G) → 0 is a graded cochain complex whose differ-
ential is degree preserving.
(b) The cohomology groups H i(G)(= H i

A(G)) are independent of the ordering of the edges
of G, and therefore are invariants of the graph G.
(c) The graded Euler characteristic of the cochain complex is equal to the chromatic poly-
nomial of the graph G evaluated at λ = q dimA, i.e. χq(C) =

∑
0≤i≤n

(−1)iq dim(H i) =
∑

0≤i≤n

(−1)iq dim(Ci) = PG(q dimA)

Proof. The proof is rather standard and similar to the one in the previous case. We sketch
the ideas here.
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(a). To prove this defines a cochain complex, we need to show that d is a differential.
That is, d ◦ d = 0. This is done in two steps. First, we verify that the maps dξ makes the
cube commutative, a fact follows from the associativity of the algebra, as illustrated below.

a
ab

a
b (ab)c = a(bc)

c

bc
where a dotted circle 
represents a connected
component of the graph.

c

Second, the signs (−1)ξ in d allow us to cancel out all terms in d ◦ d. Thus d ◦ d = 0.
Note that here is no canonical order on the components of [G : s] so we need the

multiplication to be commutative.
To show that d is degree preserving, we note that the multiplication map on A is always

degree preserving, which then implies each map dξ is degree preserving, and therefore so is
d.

(b). This is similar to Theorem (17). Each permutation of the edges of G is a product of
transpositions of the form (k, k + 1). An explicit isomorphism can be constructed for each
such transposition. In fact, this shows that the isomorphism class of the cochain complex
is an invariant of the graph.

(c). First, we already showed in the proof of Proposition (10) that
∑

0≤i≤n
(−1)i ·

q dim(H i) =
∑

0≤i≤n
(−1)i · q dim(Ci). Next, we note that q dimCα(G) = q dimA⊗k =

(q dimA)k where k is the number of connected components of [G : s]. Taking direct sum
over s ⊆ E(G), |s| = i, and then taking alternating sum over i, we obtain the equation∑
0≤i≤n

(−1)i · q dim(Ci) = PG(q dimA) by the state sum (1.2).

Remark 42. (a) The above graded cochain complex can easily be seen to be a bi-graded
cochain complex. Let Ci,j(D) be the submodule of Ci(D) consisting of homogeneous elements
with degree j. Let di,j be the restriction of di to elements with degree j. For each j we have
a cochain complex

0 → C0,j(D) d0,j→ C1,j(D) d1,j→ · · · dn−1,j→ Cn,j(D) → 0

The direct sum of these cochain complexes, with the obvious gradings, is equal to the
cochain complex in Theorem (41). The different gradings don’t interfere hence Ci(G) =
⊕jC

i,j(G) and H i(G) = ⊕jH
i,j(G).

(b) Our cochain complexes can also be described in terms of enhanced states. One defines
an enhanced state S of G to be a pair (s, c) where s ⊆ E(G) and c is an assignment of an
element of A to each connected component of [G : s]. One identifies S with the element
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c(E1) ⊗ · · · ⊗ c(Ek) of Cs(G) = A⊗k, where E1, · · · , Ek are components of [G : s]. Thus
Ci(G) is generated by states with |s| = i. When each c(Ei) is a homogeneous element of A,
we say the coloring c and the enhanced state S are homogeneous, and we define its degree
to be j(S) =

∑
i deg c(Ei). It is easy to see that Ci,j above is generated by all homogeneous

enhanced states S with i(S) = i, j(S) = j. The differential of each enhanced state is then
defined to be the operation of adding each edge not in s, adjusting the coloring c using the
multiplication on A, and then taking the summation over the edges in E(G) − s with ap-
propriate ±1 signs in front of each term.

Remark 43. The definition of the differential can be generalized the following way. Re-
member that, in the above construction, we set the per-edge map dξ to be the identity if
adding the edge e doesn’t change the number of components. However in this case we can
allow dξ to be any degree preserving Z-linear map f : A → A such that f(xy) = f(x)f(y),
i.e. any degree preserving Z-algebra map. The requirement that the cube commutes before
sign assignments forces the condition that f respects multiplication and the requirement that
the differential of the resulting cochain complex is degree preserving forces f to have this
same property.
We will use the notation d = (m, f) to indicate that the differential is defined using the
multiplication m when adding an edge decreases the number of edges and the map f other-
wise. If we don’t specify, it means that we are using d = (m, id), as explained above. More
on this will be explained in [HR05].

3.2 Some properties

In Chapter (2) we proved various basic properties for the graph cohomology groups when
the algebra is Z[X]/(X2). These properties can be carried over here for general algebras.
The most interesting property is a long exact sequence, which can be considered as a
categorification for the deletion-contraction rule for the chromatic polynomial.

The long exact sequence comes from a short exact sequence of graded chain homomor-
phisms

0 → Ci−1(G/e) α→ Ci(G)
β→ Ci(G − e) → 0

which we explain here. Basically α is the map that puts the edge e back, and β is the
projection map that kills every state containing e. A more precise description is given below.
First, we order the edges of G so that e is the last edge. This induces natural orderings on the
edge sets of G/e and G−e by deleting e from the list. For each s ⊆ E(G/e), let s̃ = s∪{e}.
Then s̃ ⊆ E(G). Recall that Cs(G/e) (resp. Cs̃(G)) is the tensor product of A taken over
components of [G/e : s] (resp. [G : s̃]). The components of [G/e : s] and the components of
[G : s̃] are the same except for the one involving e where they are related by a contraction
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of e. Thus we have Cs(G/e) ∼= Cs̃(G) via a natural isomorphism, since the tensor factors
naturally correspond to each other. Let α|Cs(G/e) : Cs(G/e) → Cs̃(G) be this isomorphism.
Taking direct sum over s, we obtain the homomorphism α : Ci−1(G/e) → Ci(G).

Next, we explain the map β : Ci(G) → Ci(G − e). We have Ci(G) = ⊕|s|=iCs(G). If
e 
∈ s, s is automatically a subset of E(G−e). We have Cs(G) = Cs(G−e) since the graphs
[G : s] and [G − e : s] are identical. The map β acts like the identity map from Cs(G) to
Cs(G − e). If e ∈ s, we let β|Cs(G) be the zero map. Taking direct sum over s with |s| = i,
we obtain the map β : Ci(G) → Ci(G − e). A standard diagram chasing argument shows
that this defines a short exact sequence of cochain complexes. Thus we have

Theorem 44. Let G be a graph, and e be an edge of G.
(a)For each i, there is a short exact sequence of graded chain homomorphisms: 0 →
Ci−1(G/e) α→ Ci(G)

β→ Ci(G − e) → 0, and therefore by the zig-zag lemma,
(b) it induces a long exact sequence of cohomology groups: 0 → H0(G)

β∗
→ H0(G − e)

γ∗
→

H0(G/e) α∗→ H1(G)
β∗
→ . . . → H i(G)

β∗
→ H i(G − e)

γ∗
→ H i(G/e) α∗→ . . .

Taking the alternating sum of the graded dimensions in the above long exact sequence,
we obtain the deletion-contraction rule. It is in this sense that the long exact sequence is
considered as a categorification of the deletion-contraction rule.

It is useful to understand the following geometric description of the maps α∗, β∗, and
γ∗: α∗ expands the edge e, β∗ is the projection map that kills every state containing e, γ∗

adds the edge e, contracts it to a point, and then multiply the corresponding term by (−1)i.
In all cases, there is a natural coloring that goes with the new state using the multiplication
on A.

Other basic properties can follow either from this exact sequence or from the definition.
We have

Corollary 45. (a) If a graph has a loop then all the cohomology groups are trivial.
(b) The cohomology groups are unchanged if all the multiple edges of a graph are replaced
by single edges.

Proof. (a). In the long exact sequence

. . .→H i−1(G − e)
γ∗
→ H i−1(G/e) α∗→ H i(G)

β∗
→ H i(G − e)

γ∗
→ H i(G/e) α∗→ . . .

we have G/e = G − e and the map γ∗ is the identity map multiplied by (−1)i. It follows
that H i(G) = 0 for each i.

(b) Let e1 and e2 be two edges connecting the same pair of vertices in G. In the exact
sequence

H i−1(G/e2)
α∗→ Hk(G)

β∗
→ H i(G − e2)

γ∗
→ H i(G/e2)
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the graph G/e2 contains a loop coming from e1. Therefore H i−1(G/e2) = H i(G/e2) = 0. It
follows that H i(G) ∼= H i(G − e2). One can repeat this process until there is no redundant
edge in G.

Next, we consider the effect of adding a pendant edge to a graph. Recall that a pendant
vertex in a graph is a vertex of degree one, and a pendant edge is an edge connecting a
pendant vertex to another vertex. Let e be a pendant edge in a graph G, then PG(λ) =
(λ − 1)PG/e(λ). An analogous equation on the cohomology level is given below.

First we prove an algebraic lemma.

Lemma 46. Let A be an algebra over Z that satisfies Assumptions (40). Then A has an
identity which generates a direct summand as a Z-module, that is, A ∼= Z1A ⊕ A′ as a
Z-module, where Z1A is the Z-module generated by the identity of A.

Proof. We use the following theorem:
If F is free abelian group of finite rank n and H is a non-zero sub-group of F, then

there exists a basis {e1, e2, · · · , es} of F , an integer r (1 � r � s) and positive integers
d1, d2 · · · , dr such that d1|d2| · · · |dr and H is free abelian with basis {d1e1, d2e2, · · · , drer}.

By assumption, A = ⊕∞
j=0Aj where each Aj is a free Z-module of finite rank. The fact

that 12
A = 1A forces the degree of 1A to be zero so 1A ∈ A0. The previous theorem applied

to F = A0 and H = Z1A yields a basis {e1, e2, · · · , es} for A0 such that de1 = 1A for some
positive integer d.

It is enough to show that d = 1. We have 1A = (1A)2 so 1A = de1 = d2e2
1. We write

e2
1 as a linear combination of the basis elements: e2

1 = α1e1 + α2e2 + · · ·αses. This implies
1A = d2e2

1 = d2α1e1 + d2α2e2 + · · · d2αses. On the other hand 1A = de1. The uniqueness of
coefficients imply the equality d = d2α1 in Z so d = 1. Therefore A′ = Ã ⊕ [⊕j�1Aj ] where
Ã is the Z-module generated by {e2, e2, · · · , es} satisfies A ∼= Z1A ⊕A′.

Corollary 47. Let A be an algebra over Z that satisfies Assumptions (40). By lemma (46)
A ∼= Z1A ⊕A′. We have H i(G) ∼= H i(G/e) ⊗A′ where e is a pendant edge of G.

Proof. Consider the operations of contracting and deleting e in G. Denote the graph G/e

by G1. We have G/e = G1, and G − e = G1  {v}, where v is the end point of e with
deg v = 1. Consider the exact sequence

· · ·H i−1(G1  {v}) γ∗
→ H i−1(G1)

α∗→ H i(G)
β∗
→ Hk(G1  {v}) γ∗

→ H i(G1) → · · ·

We need to understand the map

H i(G1  {v}) γ∗
→ H i(G1)

50



It is easy to compute the cohomology groups for the one point graph {v}(see the first
example in the next section). We have H0({v}) ∼= A and H i({v}) = 0 for all i > 0. Thus,
the Künneth type formula below implies

H i(G1  {v}) ∼= H i(G1) ⊗A

by a natural isomorphism h∗. By assumption, A ∼= Z ⊕ A′. We identify H i(G1  {v})
with H i(G1) ⊗ (Z ⊕ A′). The map γ∗ : H i(G1  {v}) → H i(G1) sends x ⊗ 1 to (−1)ix.
In particular, γ∗ is onto. Therefore the above long exact sequence becomes a collection of
short exact sequences

0 → H i(G)
β∗
→ H i(G1  {v}) γ∗

→ H i(G1) → 0 (3.1)

Therefore, H i(G) ∼= ker γ∗.
We define a homomorphism:

f : H i(G1) ⊗A′ → ker γ∗ by f(x ⊗ a′) = x ⊗ a′ − (−1)iγ∗(x ⊗ a′) ⊗ 1

One checks that f is an isomorphism of Z-modules.
Hence H i(G) ∼= ker γ∗ ∼= H i(G1) ⊗A′.

Remark 48. The isomorphism f : H i(G1) ⊗ A′ → H i(G) defined above allows us to
find generators for H i(G), namely, ek ⊗ aj − (−1)iγ∗(ek ⊗ aj)⊗ 1 where ek’s form a set of
generators for H i(G1) and aj’s form a basis for A′. This will be useful for our computations
in section (3.3). The relations between the generators can also be obtained as the images of
the relations under this isomorphism.

The isomorphism can be visualized the following way. ek is a sum of terms of the form
u. This picture means that the component that includes this vertex has been assigned

the value u ∈ A. Such a term becomes u ua

a 1
-

j

j
under the action of f , where

the element of A written close to a vertex indicates the label that has been assigned to this
component.

Finally, we state a Künneth theorem type formula for our cohomology groups under
disjoint union. It will be used in our computation in the next section.

Proposition 49. For each i ∈ N, we have:

H i(G1  G2) ∼=
[

⊕
p+q=i

Hp(G1) ⊗ Hq(G2)
]
⊕

[
⊕

p+q=i+1
Hp(G1) ∗ Hq(G2)

]
where * denotes the torsion product of two abelian groups.

Proof. Given our assumptions on A, the cochain complexes for G1 and G2 are free. There-
fore we can use the same proof as the one for Theorem (25).
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3.3 Some Computations

Example 50. Let G = Nn be the order n null graph. That is, the graph with n vertices
and no edges. Then C0

A(G) ∼= A⊗n and Ci
A(G) = 0 for i > 0. It follows that H0

A(G) ∼= A⊗n

and H i
A(G) = 0 for all i > 0.

Example 51. Given any graph G, let G  Nn be the graph obtained by adding n isolated
vertices to G. By Proposition (49) and Example (50), H∗(G  Nn) ∼= H∗(G) ⊗A⊗n.

Example 52. Let G = T1 be the graph with two vertices connected by an edge e. The exact
sequence on (G, e) gives:

0 → H0(G)
β∗
→ H0(G − e)

γ∗
→ H0(G/e) α∗→ H1(G)

β∗
→ 0

where H0(G−e) = H0(N2) ∼= A⊗A and H0(G/e) = H0(N1) ∼= A. The map γ∗ : A⊗A → A
is just the multiplication map m sending a1 ⊗ a2 to a1a2. Thus H0(G) ∼= ker{m : A⊗A →
A}. If we assume A has an identity, then m is onto and therefore H1(G) ∼= 0. For all
i > 1, we have H i(G) = 0 by the exact sequence.

If the algebra A satisfies the condition in Assumptions (40), then H0(Tn) ∼= A⊗A′⊗n.

Example 53. In this example we compute a presentation of H1
A(K3) valid for any A as

in (40) and then use this result to compute H1
Z[X](K3) and H1

Z[X]/(X3)(K3). We also give a
presentation of H0

A(K3) valid for any A.

� Let A be an algebra satisfying Assumptions (40). Consider the graded cochain complex
for CA(G) :

0 → C0 d0→ C1 d1→ C2 d2→ C3 → 0

where C0 ∼= A⊗A⊗A, C1 ∼= (A⊗A) ⊕ (A⊗A) ⊕ (A⊗A), C2 ∼= A⊕A⊕A, C3 ∼= A
The cochain complex is represented in Figure (3.1).
The differentials are defined as:

d0(a⊗b⊗c) = (ab⊗c, ac⊗b, a⊗bc)
d1(a⊗b, 0, 0) = (−ab,−ab, 0), d1(0, a⊗b, 0) = (ab, 0,−ab), d1(0, 0, a⊗b) = (0, ab, ab)
d2(a, 0, 0) = a, d2(0, a, 0) = −a, d2(0, 0, a) = a.

It follows immediately that H3(G) = 0 since d2 is onto. We also have H2(G) = 0 since
ker d2 is generated by (a, a, 0) and (0, a, a), and each of the two elements is in Imd1. To
find H1 and H0, we need to understand ker d1 and Im d0.

Define D = {(x, x, x)|x ∈ A×A}, K2 = {(0, x, 0)|x ∈ kerm}, K3 = {(0, 0, x)|x ∈ kerm}
where m : A⊗A → A is the multiplication map on A . All three are subspaces of ker d1.
Claim. ker d1 = D ⊕ K2 ⊕ K3.
Proof of Claim. Standard.
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Figure 3.1: The cochain complex CA(K3)

Now let {a, b, c, · · · , } be a basis of A. Define
da,b = (a ⊗ b, a ⊗ b, a ⊗ b),
fa,b = (0, a ⊗ b − ab ⊗ 1, 0),
ga,b = (0, 0, a ⊗ b − ab ⊗ 1). Note that when b = 1, fa,1 = ga,1 = 0. They form a generating
set of ker d1. We need to take ker d1, mod Imd0, which is generated by all elements of the
form (ab⊗c, ac⊗b, a⊗bc). A straight forward computation shows

(ab⊗c, ac⊗b, a⊗bc) = dab,c + fac,b − fab,c + ga,bc − gab,c.

Theorem 54. Therefore, we obtain a presentation for H1
A(K3) as a Z-module:

H1
A(K3) ∼= {da,b, fa,b, ga,b| dab,c + fac,b − fab,c + ga,bc − gab,c = 0}

� We now specialize to A = Z[X]. Thus a = xr, b = xs, c = xt. For simplicity of
notations, we will denote dxr,xs by dr,s, same for f and g. Thus dr,s = (xr ⊗ xs, xr ⊗
xs, xr ⊗ xs, ), fr,s = (0, xr ⊗ xs − xr+s ⊗ 1, 0), gr,s = (0, 0, xr ⊗ xs − xr+s ⊗ 1, ). Again, if
s = 0, we have fr,0 = gr,0 = 0. We show three sub-examples below, which correspond to
j = 1, 2, and 3 respectively.

Example (a) j = 1. This means the degree of each term in the generators and relations
are one. For generators, we have r + s = 1 which implies (r, s) = (1, 0) or (0, 1). For
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relations, we have r+s+ t = 1 which implies (r, s, t) = (1, 0, 0), or (0, 1, 0) or (0, 0, 1). This
yields the following presentation of H1,1.
Generators: d1,0, d0,1, f1,0, f0,1, g1,0, g0,1, where f1,0 = g1,0 = 0
Relations: d1,0 + f1,0 − f1,0 + g1,0 − g1,0 = 0,
d1,0 + f0,1 − f1,0 + g0,1 − g1,0 = 0,
d0,1 + f1,0 − f0,1 + g0,1 − g0,1 = 0.
This implies that H1,1 ∼= Z with generator being f0,1 = (0, 1 ⊗ x − x ⊗ 1, 0).

Example (b) j = 2. The solutions for r + s = 2 are (2, 0), (1, 1), (0, 2). The solutions for
r + s + t = 2 are (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1). We have the following
presentation for H1,2,
Generators: d2,0, d1,1, d0,2, f1,1, f0,2, g1,1, g0,2. (this time we dropped f1,0 and g1,0 which are
0.
Relations: d2,0 = 0
d2,0 + f0,2 − 0 + g0,2 − 0 = 0
d0,2 + 0 − f0,2 + g0,2 − g0,2 = 0
d2,0 + f1,1 − 0 + g1,1 − 0 = 0
d1,1 + 0 − f1,1 + g1,1 − g1,1 = 0
d1,1 + f1,1 − f1,1 + g0,2 − g1,1 = 0.
This implies H1,2 ∼= Z, generated by f1,1. Other generators can be expressed in terms of
f1,1 as follows: d2,0 = 0, d1,1 = f1,1, d0,2 = f0,2 = −g0,2 = 2f1,1, g1,1 = −f1,1.

Example (c)j = 3. The solutions for r+s = 3 are (3, 0), (2, 1), (1, 2), (0, 3). The solutions
for r + s + t = 3 are:
(3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2), (1, 1, 1). Thus a
presentation for H0,3 is:
Generators: d3,0, d2,1, d1,2, d0,3, f2,1, f1,2, f0,3, g2,1, g1,2, g0,3.
Relations: d3,0 + 0 − 0 + 0 − 0 = 0
d3,0 + f0,3 − 0 + g0,3 − g3,0 = 0
d0,3 + 0 − f0,3 + g0,3 − g0,3 = 0
d3,0 + f2,1 − 0 + g2,1 − 0 = 0
d3,0 + f1,2 − 0 + g1,2 − 0 = 0
d2,1 + 0 − f2,1 + g2,1 − g2,1 = 0
d1,2 + 0 − f1,2 + g1,2 − g1,2 = 0
d2,1 + f1,2 − f2,1 + g0,3 − g2,1 = 0
d1,2 + f2,1 − f1,2 + g0,3 − g1,2 = 0
d2,1 + f2,1 − f2,1 + g1,2 − g2,1 = 0
This implies that H1,3 ∼= Z with f2,1 being a generator. Other generators can be expressed
in terms of f2,1 as follows: d3,0 = 0, d2,1 = f2,1, d1,2 = 2f2,1, d0,3 = 3f2,1, f1,2 = 2f2,1, f0,3 =
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3f2,1, g2,1 = −f2,1, g1,2 = −2f2,1, g0,3 = −3f2,1.

� This allows us to compute cohomology groups of K3 when A = Z[X]/(Xk). For
example, let k = 3, we have X3 = 0 in A. Thus d0,3 = f0,3 = g0,3 = 0 (we already knew
that d3,0 = f3,0 = g3,0 = 0. Thus the above presentation implies the following presentation
of H1,3(C3) when A = Z[X]/(X3):
Generator: f2,1, relations: 3f2,1 = 0 this yields H1,3(K3) ∼= Z3.

Recall that when Z[X]/(X2), H1,2(K3) ∼= Z2.

� These computations also show the induced homomorphism G(f) : HA(K3) → HB(K3)
when f : A → B is an algebra homomorphism. For example, if f : Z[X] → Z[X]/(X3) is
the obvious onto homomorphism, then G(f) : H1,3

A (K3) → H1,3
B (K3) is the homomorphism

sending f2,1 in the domain to f2,1 in the target. In other words, it is the homomorphism
from Z onto Z3 sending 1 to 1.

� Finally, for H0(G) = ker d0 which is the set of all elements of the form∑
a,b,c λa,b,ca ⊗ b ⊗ c that satisfy the system of equations:∑
a,b,c λa,b,cab ⊗ c = 0∑
a,b,c λa,b,cac ⊗ b = 0∑
a,b,c λa,b,ca ⊗ bc = 0

Specific computations involve some standard linear algebra.

Example 55. Let G = K3, the circuit graph with 3 vertices and 3 edges. Let Z[X]/(X3),
we have

H0(C3) ∼= Z{3} ⊕ Z3{4} ⊕ Z3{5} ⊕ Z{6}

H1(G) ∼= Z{1} ⊕ Z{2} ⊕ Z3{3}
and H i(G) = 0 for i > 1.

We are going to show the computation using the exact sequence.
� If G = N1, the graph with one vertex and no edge, then H0(G) ∼= A with generators

being {xr|r = 0, 1, 2}.
� If G = T1, the tree with one edge, Corollary (47) and Remark (48) implies that

H0(G) ∼= A ⊗A′ with generators {ers|r = 0, 1, 2, s = 1, 2}, where ers = xr ⊗ xs − xr+s ⊗ 1

in H0(G). ers can be seen as Xr X X 1
-

r+ss . For simplicity, we denote ers by ers =

xrxs − xr+s1 (without the tensor product symbols).
� If G = T2, the tree with two edges, the same argument shows that a set of generators

of H0(G) ∼= H0(T1) ⊗A′ is {erst|r = 0, 1, 2, s = 1, 2 and t = 1, 2} where
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erst = (xrxsxt − xrxs+t1) − (xr+s1xt − xr+sxt1) and can be represented by

Xr X 1-
s Xt Xr X Xts+t

1Xr+s
- Xt 1Xr+s

+ .

� Now, let G = K3 be the circuit graph with three vertices and three edges. Let e be
an edge of K3. The exact sequence on (K3, e) gives

0 → H0(K3)
β∗
→ H0(K3 − e)

γ∗
→ H0(K3/e) α∗→ H1(K3) → 0

where H0(K3 − e) = H0(T2) is freely generated by
{e011, e012, e021, e111, e022, e112, e121, e211, e122, e212, e221, e222},
and H0(K3/e) ∼= H0(T1) is freely generated by {e01, e02, e11, e12, e21, e22}. The map γ∗

sends a ⊗ b ⊗ c to ac⊗ b. Thus γ∗(erst) = xr+txs − xrxs+t − xr+s+t1 + xr+sxt = (xr+txs −
xr+s+t1) − (xrxs+t − xr+s+t1) + (xr+sxt − xr+s+t1) = er+t,s − er,s+t + er+s,t. This gives

γ∗(e011) = e11 − e02 + e11 = 2e11 − e02

γ∗(e012) = e21 − e03 + e12 = e12 + e21 (here e03 = 0 since x3 = 0)
γ∗(e021) = e12 − e03 + e21 = e12 + e21

γ∗(e111) = e21 − e12 + e21 = −e12 + 2e21

γ∗(e022) = e22 − e04 + e22 = 2e22

γ∗(e112) = e31 − e13 + e22 = e22

γ∗(e121) = e22 − e13 + e31 = e22

γ∗(e211) = e31 − e22 + e31 = −e22

γ∗(e122) = e32 − e14 + e32 = 0
γ∗(e212) = e41 − e23 + e32 = 0
γ∗(e221) = e32 − e23 + e41 = 0
γ∗(e222) = e42 − e24 + e42 = 0
This allows us to compute the cohomology groups of K3, since H0(K3) ∼= ker γ∗, H1(K3) ∼=

H0(K3/e)/Imγ∗. Although the computation involves a 12 × 6 matrix, the actual compu-
tation is quite simple, since the map γ∗ breaks into several maps according the degree (i.e.
r + s + t in the domain).

The same idea can be applied to the ring A = Z[X]. However, in this case, the “thick-
ness” of the cohomology groups is infinite. In other words, there are infinitely many j such
that H0,j(K3) is nonzero. We have the following partial result:
H0,0(K3) = H0,1(K3) = H0,2(K3) = H0,3(K3) = 0
For j � 4, H0,j(K3) is nonzero.

A pattern seems to appear: We define the Z-algebra Am by Am := Z[X]/Xm. Our
examples show that H1,2

A2
(P3)) = Z2 and H1,3

A3
(P3)) = Z3. We make the following conjecture:

Conjecture 56. Let K3 be the polygon graph on 3 vertices,

H1,m
Am

(P3) = Zm
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This dissertation was defended in May 2005 and the above result has since then been
proved in [HPR05] in July 2005.

Ring with no grading
Next, let us consider the special case when our ring A has no grading, i.e. every element

of A has degree 0. The graded dimension of A is then an integer, namely dimA. Thus the
Euler characteristic of our cohomology groups is the integer PG(λ) where λ = dimA.

We would like to mention the work of Eastwood and Huggett in [EH00]. For each
positive integer λ and each graph G, they construct a topology space M whose Euler
characteristic is the integer PG(λ). We don’t know if there is any connection between the
cohomology groups of M and the cohomology groups here.

� Ring with no grading, rank(A)=1

Example 57. Let A = Z with the usual ring structure. We have q dimA = 1, P (G, 1) = 1
if G has no edge and 0 otherwise. For the cohomology groups, we have

H i(G) ∼=
{

Z if i = 0 and G has no edge,
0 otherwise.

This can be easily proved by inducting on the number of edges and using the long exact
sequence.

� Ring with no grading, rank(A)=2
Next, we will compute a few examples when dimA = 2. Thus (A, +) is the free abelian

group of rank two, with generators 1 and x. Let us consider various ring structures on A
so that 1 is the identity. Therefore the product ∗ satisfies 1 ∗ 1 = 1, 1 ∗ x = x ∗ 1 = x, and
x ∗ x = a1 + bx where a, b are two fixed integers. In the Annexes, in section (6.2), we show
that the isomorphism type of such a ring depends on a2 + 4b.

Example 58. Let A be the ring above. Then

H0
A(K3) ∼=

{
Z if b2 + 4a = 0,
0 otherwise.

H1
A(K3) ∼=


Z2 ⊕ Z if b2 + 4a = 0,
Z|b2+4a| if b2 + 4a 
= 0 and b is odd
Z2 ⊕ Z |b2+4a|

2

if b2 + 4a 
= 0 and b is even

H i
A(G) = 0 for all i > 1.

The computation is based on the exact sequence similar to last example.
� If G = N1, the graph with one vertex and no edge, then H0(G) ∼= A with generators

being 1 and x.
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� If G = T1, the tree with one edge, Corollary (47) implies that H0(G) ∼= A ⊗Zx ∼= A.
By Remark (48), we have the following basis: e1 = 1 ⊗ x − x ⊗ 1 = 1x − x1, e2 = x ⊗ x −
x ∗ x⊗ 1 = x⊗ x− (a1 + bx)⊗ 1 = x⊗ x− a1⊗ 1− bx⊗ 1 = xx− a11− bx1. For simplicity
of notation, we suppressed the tensor product symbol ⊗. Thus 1x denotes 1 ⊗ x.

� If G = T2, the tree with two edges, the same argument shows that H0(T2) ∼= A. To
describe the basis, we denote the three vertices of T2 by 1, 2, and 3 with 2 being the vertex
with degree two. A basis is:
f1 = (1 ⊗ x ⊗ x − 1 ⊗ x ∗ x ⊗ 1) − (x ⊗ 1 ⊗ x − x ⊗ 1 ∗ x ⊗ 1)
= (1xx) − 1(a1 + bx)1 − (x1x) + (xx1) = (1xx) − a(111) − b(1x1) − (x1x) + xx1),
f2 = (xxx) − [x(x ∗ x)1] − a(11x − 1x1) − b(x1x − xx1)
= (xxx) − x(a1 + bx)1 − a(11x) + a(1x1) − b(x1x) + b(xx1)
= (xxx) − a(x11) − b(xx1) − a(11x) + a(1x1) − b(x1x) + b(xx1).

� Now, let G = K3 be the circuit graph with three vertices and three edges. Let e be
an edge of K3. The exact sequence on (K3, e) gives

0 → H0(K3)
β∗
−→ H0(K3 − e)

γ∗
−→ H0(K3/e) α∗−→ H1(K3) → 0

We have H0(K3 − e) = H0(T2) ∼= Z ⊕ Z with {f1, f2} being a basis, and H0(K3/e) ∼=
H0(T1) ∼= Z ⊕ Z with {e1, e2} being a basis. The map γ∗ adds the edge e to T2, adjust the
color using the multiplication on A, and then shrink e to a point. In other words, it sends
a⊗b⊗c to ac⊗b. Thus γ∗(f1) = γ∗((1xx)−a(111)−b(1x1)−(x1x)+xx1) = xx−a11−b1x−
(x2)1+xx = 2(xx)−a(11)− b(1x)− (a1+ bx)1 = 2[(xx)−a(11)− b(x1)]− [b(1x)− b(x1)] =
−be1 + 2e2. γ∗(f2) = γ∗((xxx) − a(x11) − b(xx1) − a(11x) + a(1x1) − b(x1x) + b(xx1))
= (x ∗ x)x − a(x1) − b(xx) − a(x1) + a(1x) − b((x ∗ x)1) + b(xx)
= (a1 + bx)x − 2a(x1) − b(xx) + a(1x) − b((a1 + bx)1) + b(xx)
= a(1x) + b(xx) − 2a(x1) − b(xx) + a(1x) − ab(11) − b2(x1) + b(xx)
= b(xx) − 2a(x1) − b2(x1) + 2a(1x) − ab(11)
= 2a(1x − x1) + b(xx) − ab(11) − b2(x1)
= 2ae1 + be2

If b2 + 4a = 0, H0(K3) ∼= Z. Otherwise, H0(K3) = 0.
We now determine H1. H1(K3) has a presentation with generators e1, e2 and relations

−be1 + 2e2 = 0, and 2ae1 + be2 = 0.
If b is odd, then b2 + 4a 
= 0, and we have H1(K3) ∼= Z|b2+4a|.
If b is even, then H1(K3) ∼= Z⊕Z2 if b2 +4a = 0, and H1(K3) ∼= Z |b2+4a|

2

⊕Z2 if b2 +4a 
= 0.

This implies the announced results for the cohomology groups.

Example 59. A sequence of graphs with the same chromatic polynomial that can

be distinguished by their cohomology groups, provided we allow a larger class

of differential, as explained in Remark (43).
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Let Ln be the graph with one vertex and n edges. For n � 1, all these graph have at
least one loop so their chromatic polynomial is zero.

Let A = ZX where X has degree 1 and satisfies X2 = 0. We set the per edge map
corresponding to adding the edge e to be the multiplication in A if adding e decreases the
number of components and to be 0 otherwise, as allowed by Remark (43). This produces
a differential that is always equal to zero, hence the cohomology groups are the cochain
groups.

It suffices to show that the cochain groups distinguish these graphs. But this is easy to
see since,

For n � 1, Ci(Ln) =

{
A if 0 � i � n

0 otherwise.

Note that the Tutte polynomial distinguishes these graphs since t(Ln) = yn for n ≥ 1.

59



Chapter 4

Determine which graphs have

torsion in at least one cohomology

group

The results of this section are covered in [HPR05].

A natural question is to determine under which circumstances at least one of the coho-
mology group has a torsion part. The main result is that, when the algebra on which the
construction is based is Z[X]/(X2), a loopless graph will always have a Z2 torsion provided
it contains a cycle of length at least 3.

In order to alleviate the writing, we might simply say H∗(G) contains a torsion to mean
that at least one of the H∗(G) contains a torsion.

4.1 When the algebra is Z[X]/(X2)

4.1.1 Facts and observations

� We start by reminding some facts that were proved earlier and that are going to be useful
here.

Fact 60. The cohomology groups of a forest, so in particular the ones of a tree, don’t have
torsion.

Fact 61. If the graph has a loop then all the cohomology groups are trivial.

Fact 62. The cohomology groups are unchanged if the multiple edges of a graph are replaced
by single edges.
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� This table has been copied from computational results for circuit graphs (35). It illus-
trates our computational results (up to n = 6 and i = 4) for polygonal graphs (= circuit
graphs), where n is the length of the cycle and i is the height of the cohomology group.

n\i H0 H1 H2 H3 H4

P1 0 0 0 0 0

P2 Z{2} ⊕ Z{1} 0 0 0 0

P3 Z{3} Z2{2} ⊕ Z{1} 0 0 0

P4 Z{4} ⊕ Z{3} Z{3} Z2{2} ⊕ Z{1} 0 0

P5 Z{5} Z2{4} ⊕ Z{3} Z{3} Z2{2} ⊕ Z{1} 0

P6 Z{6} ⊕ Z{5} Z{5} Z2{4} ⊕ Z{3} Z{3} Z2{2} ⊕ Z{1}

We first note that, for all n ≥ 3, H∗(Pn) contains torsion.
A closer look at these examples reveals that, in the case of an odd cycle, there seems to

always be a torsion in H1(G) in degree p− 1, and in the case of an even cycle, there seems
to always be a torsion in H2(G) in degree p − 2 where p is the number of vertices of the
graph. These remarks will guide us for the formulation of the lemmas.

4.1.2 The result

Theorem 63. Let G be a graph. We denote by G′ the graph obtained from G by replacing
multiple edges by single edges. The following are equivalent.

1. H∗(G) contains a torsion part,

2. H∗(G) contains a Z2-torsion,

3. G has no loops and G′ is not a forest, or, equivalently, G has no loops and contains
a cycle of order ≥ 3.

Note that this doesn’t mean that Z2 is the only possible torsion. It only implies that if
there is a torsion different from Z2 then there will also be Z2-torsion.

Proof. (2) ⇒ (1) is obvious.
(1) ⇒ (3) Let � be the maximum length of a cycle in G.
� can’t be 0 because that would mean that G is a forest. This would contradict Fact (60).
� can’t be 1 because that would mean that G has a loop. This would contradict Fact (61).
Assume � = 2. That means that G has a double edge. Hence, the maximum length of a
cycle in G′ would be 0 or 1. As we just saw, this means that the cohomology groups of G′

have no torsion. However, G′ and G have the same cohomology groups by Fact (62). This
contradicts the assumption (1).
(3) ⇒ (2) is what we are going to prove below in Lemmas (64) and (65).
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4.1.3 The odd cycle case

Lemma 64. If a loopless graph G with p vertices contains an odd cycle of length ≥ 3, then
H1,p−1(G) contains a Z2-torsion.

Proof. Let G be a loopless graph with p vertices containing a cycle of length 2s + 1 with
s ≥ 1.

It suffices to find an element z in ker d1 of degree p − 1 such that 2z = 0 in H1(G) and
z 
= 0 in H1(G). The condition 2z = 0 in H1(G) is the same as 2z ∈ Imd0,p−1. Therefore,
our first step will be to determine Imd0,p−1.
� Matrix representation of d0,p−1:
For convenience, we label the vertices of the graph starting with the ones in the cycle. The
vertices in the cycle are labeled monotonically v1 to v2s+1, with the requirement that each
vi is adjacent to vi+1 and v2s+1 is adjacent to v1. The vertices that are not in the cycle are
labeled v2s+2 to vp. Examples are given in Figure (4.1).

We label the edges in the cycle so that ei is the edge vivi+1 for 1 ≤ i ≤ 2s and e2s+1 is
the edge v2s+1v1. The edges that are not in the cycle are labeled e2s+2 to en.

The basis elements of C0,p−1(G) have p components and degree p− 1 which means that
all vertices are assigned the value X except one which is assigned the value 1. The basis
element for which 1 is assigned to the vertex vi and with X assigned to all the other vertices
is denoted by bi. The basis elements for which the 1 is assigned to a vertex in the cycle are
b1 to b2s+1.

In order to write a matrix for d0,p−1, we also need to describe the basis elements of
the target space C1,p−1(G). First, note that each of these basis elements contains one
edge, which, by assumption, is not a loop. Thus each of these basis elements has p − 1
components. Therefore for degree reasons, all the components are assigned the value X.
The basis element for which the present edge is ei and with X assigned to all the components
is denoted by ai. The basis elements for which the present edge is in the cycle are a1 to
a2s+1.

With these notations, we get a matrix representing d0,p−1, which is shown in (4.1) below
.

� Let z =
∑n

i=1 ai

� We first prove that 2z ∈ Imd0,p−1:
In the matrix representation of d0,p−1, the coordinates of the image of bi under the

differential, in the basis (ai)i are listed in the ith row.
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G= v

v v

v

v

1

2 3

4

5e5

e1

e2

e3

e4v6

v7
e6 e7

v

v

v

v

1

2

v3

4

5e5

e1

e2

e3

e4v6

v7
e6 e7

1

b  =3
No edges .
All vertices except v   have been assigned X
v   has been assigned 1.

3

v

v

v

v

1

2 v3

4

5e5

e1

e2

e3

e4v6

v7
e6 e7

a  =3
The only present edge is e
All components have been assigned X

Labeled G

3

3

Figure 4.1: Notation for basis elements basis element in C0,p−1(G) and C1,p−1(G)

Matrix of d0,p−1 a1 a2 · · · a2s+1 | a2s+2 · · · an Coeff

d(b1) →
d(b2) →

...

...
d(b2s+1) →
−−−−

d(b2s+2) →
...

d(bp) →



1 1 |
1 1 |

. . . . . . | M1

1 1 |
1 1 |

− − − − − + − − − −
|

0 | M2

|



1
1
...
1
1

−−
1
...
1

d (
∑

bi) 2, 2, · · · · · · 2 | 2, · · · · · · , 2︸ ︷︷ ︸
= 2z

(4.1)

The coefficients (all equal to 1 in (4.1)) in the column at the right indicate the coefficient
by which each line is multiplied before addition.

By adding all the rows of this matrix, we see d (
∑p

i=1 bi) = 2z so 2z ∈ Imd0,p−1.
Note that since C2(G) doesn’t have torsion, this implies that z ∈ kerd1,p−1. Indeed,

d1(2z) = 0 so 2d1(z) = 0 in C2(G).
The reason why adding the rows of M1 and M2 always yields a coordinate equal to 2

on each {aj}j≥2s+2 is that each edge has two ends (remember that there are no loops) so
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each of these {aj}j≥2s+2 is in the image of exactly two bi’s, the ones corresponding to a 1
placed at each endpoint of the edge ej .

� It remains to show that z /∈ Imd0,p−1. Assume z = d(x) for some x in C0,p−1. This x

can be written x =
∑p

i=1 αibi for some αi.
Matrix of d0,p−1 a1 a2 · · · a2s+1 | a2s+2 · · · an Coeff

d(b1) →
d(b2) →

...

...
d(b2s+1) →
−−−−

d(b2s+2) →
...

d(bp) →



1 1 |
1 1 |

. . . . . . | M1

1 1 |
1 1 |

− − − − − + − − − −
|

0 | M2

|



α1

α2

...
α2s

α2s+1

−−
α2s+2

...
αp

z = d (
∑p

i=1 αibi) 1, 1, · · · · · · 1 | 1, · · · · · · 1︸ ︷︷ ︸
= z

This means that the result of multiplying the first line by α1, the second line by α2, etc,
and adding all the lines yields (1, 1, · · · , 1), the coordinates of z on the ai’s.

If we now read this by columns, we get a contradiction:
Column 1:

+Column 2:
...

+Column 2s+1:

α1 + α2

α2 + α3

. . . . . .

α2s + α2s+1

α1 + + α2s+1

= 1
= 1
...
...

= 1

2(α1 + α2 α2s + α2s+1)︸ ︷︷ ︸ = 2s + 1︸ ︷︷ ︸
even odd

This shows that z /∈ Imd0,p−1.

4.1.4 The even cycle case

The simplest simple graph without an odd cycle is the “square” C4. As mentioned earlier, in
this case the torsion appears only for H2(G), which indicates that we have to look “deeper”
into the cohomology to find torsion than in the odd cycle case.
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Lemma 65. Let G be a simple graph, i.e. a graph with no loops and no multiple edges. If
G contains an even cycle of length ≥ 4, then H2,p−2(G) contains a Z2-torsion.

Proof. It suffices to find an element z in ker d2,p−2 such that 2z = 0 in H2(G) and z 
= 0 in
H2(G).
2z = 0 in H2(G) means that 2z ∈ Imd1,p−2 so our first step will be to determine Imd1,p−2.
� Matrix representation of d1,p−2:

The labelling of the vertices and the edges of the graph is the same as described in the
odd cycle case, as illustrated in Figure (4.1). The basis elements of C1,p−2(G) have p − 1
components since one edge is present and there are no loops. They have degree p−2 which
means that all components are assigned the value X except one that is assigned the value
1. The basis element for which the present edge is ei and the vertex that is assigned 1 is vj

is denoted by bj
i . An example is given in Figure (4.2).

G=

b  =3
No edges except e  .
All vertices except v   have been assigned X
v   has been assigned 1.

4

Labeled G

4

v2

v3

v4

v1

v6

v5
v8

v7

e2 e3

e4

e5
e6

e9

e7 e8
e1

1v2

v3

v4

v1

v6

v5
v8

v7

e2 e3

e4

e5
e6

e9

e7 e8
e1

4
3

Which edge

Which vertex

Figure 4.2: Notation for basis elements basis element in C1,p−2(G)

We also need to describe the basis elements of the target space C2,p−2(G). First, note
that each has p − 2 components because, since there are no loops and no multiple edges,
adding two edges automatically decreases the number of components by two. Therefore for
degree reasons, all the components are assigned the color X. The basis element for which
the present edges are ei and ej , with X assigned to all the components is denoted by aij

with i < j.
With these notations, we get a matrix representing d1,p−2, which is shown in the next

paragraph.
� We are now ready to exhibit an element z in ker d2 of degree p − 2 such that 2z = 0 in
H2(G) and z 
= 0 in H2(G).
� We first prove that there exists an element in Imd1,p−2 with all coordinates even. This
is the 2z we were looking for.
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In the matrix representation of d1,p−2, the coordinates of the image of bj
i under the

differential, in the basis (aij)i,j are listed in the ith row.

Matrix of d1,p−2

e1 and
another edge in cycle

ei, ej in cycle,
i, j �= 1

At least one edge
not in cycle︷ ︸︸ ︷

a12 a13 · · · a1,2s |
︷ ︸︸ ︷
a23 · · · a2s−1,2s | all other aij

Coeff

d(b1
1)

d(b3
1)

d(b2s
1 )

−−−−
d(b2s+1

1 )
...

d(bp
1)

−−−−
d(bj

i )

ei, vj in cycle

i �= 1

−−−−

other bj
i



−1 −1 | |
−1 −1 | |

−1
. . . | 0 | M1

. . . −1 | |
−1 −1 | |

− − − − − −|− − − − −|− − − −
| |

0 | 0 | M2

| |
− − − − − −|− − − − −|− − − −

| |
M3 | M4 | M5

| |
− − − − − −|− − − − −|− − − −

| |
0 | 0 | M6

| |



1

1
...
...

1

−−
1
...

1

−−
0
...

0

−−
0
...

0

d(
∑

1≤j≤p bj
1) = −2 −2 · · · · · · −2 | 0 · · · 0 | −2εij = 2z

where εij ∈ {0, 1} for all (i, j) ∈ J where J is the set of all (i, j) such that at least one
of the edges ei, ej is not in the cycle and i < j.

“Other bij” means either ei not in the cycle or ei is in the cycle but vj isn’t.

We need to explain why adding the rows of M1 and M2 always yields a coordinate equal
to −2 or 0 on each aij , (i, j) ∈ J . If i = 1, each of these a1j is in the image of exactly two
bj
1’s, the ones corresponding to a 1 placed at each endpoint of the edge ej (since each edge

has two ends under the assumption that there are no loops). If i 
= 1, aij is in the image of
none of the bj

1’s hence the coordinate on the aij with i 
= 1 are 0.
It remains to explain the negative signs. Each bj

1 is a basis element coming from the
state labeled 10....0 (the present edge is the first one in the ordering) so the label of the
per-edge map that adds the edge i with i ≥ 2 is 10..0 ∗ 0..0 with the star in the ith position.
The definition of the differential says that when there is an odd number of 1’s before the
star, the map is assigned a negative sign.
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By adding the p first rows of this matrix, we see that all the coordinates of d
(∑p

j=1 bj
1

)
are even so we can call this element 2z. Hence we achieved our first goal which was to find
2z ∈ Imd1,p−2.

Note that since C3(G) doesn’t have torsion, this implies that z ∈ kerd2,p−2.

� It remains to show that z /∈ Imd1,p−2. Assume z can be written z = d(x) for some
x ∈ C1,p−2(G). We write the coordinates of x in the same basis of C1,p−2(G) as the one we
previously used to write the matrix expression for d1,p−2. Namely, the basis for C1,p−2(G)
we use can be described as a partition B1B2B3 where B1 is the set of basis elements for
which the present edge is e1, B2 is the set of basis elements bj

i such that ei is an edge in the
cycle but is not e1 and vj is a vertex in the cycle, and B3 is the set of all other basis elements
bj
i , i.e. either the ones for which ei is an edge in the cycle but vj is not a vertex in the cycle

or ei is not in the cycle. Using this basis, we can write x as a linear combination of basis
elements, labeling its coordinates on elements of B1 by αi, its coordinates on elements of
B2 by βi,and its coordinates on elements of B3 by γi, as illustrated in the following matrix
representation.

Matrix of d1,p−2

e1 and
another edge in cycle

ei, ej in cycle,
i, j �= 1

At least one edge
not in cycle︷ ︸︸ ︷

a12 a13 · · · a1,2s |
︷ ︸︸ ︷
a23 · · · a2s−1,2s | all other aij

Coeff

d(b1
1)

d(b3
1)

d(b2s
1 )

−−−−
d(b2s+1

1 )
...

d(bp
1)

−−−−
d(bj

i )

ei, vj in cycle

i �= 1

−−−−

other bj
i



−1 −1 | |
−1 −1 | |

−1
. . . | 0 | M1

. . . −1 | |
−1 −1 | |

− − − − − −|− − − − −|− − − −
| |

0 | 0 | M2

| |
− − − − − −|− − − − −|− − − −

| |
M3 | M4 | M5

| |
− − − − − −|− − − − −|− − − −

| |
0 | 0 | M6

| |



α1

α3

...

α2s−1

α2s

−−
α2s+1

...

αp

−−
β1

...

βm

−−
γ1

...

γm′

d(x) = −1 −1 · · · · · · −1 | 0 · · · 0 | −δij = z

Note that there is no b2
1 in B1 since b2

1 and b1
1 would be the same (and no corresponding α2

coefficient). Hence the first block matrix with the −1’s is a (2s − 1, 2s − 1)-matrix.
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If we now read this by columns, what we get for the two first blocks of columns in the
matrix representation, i.e. the columns corresponding to basis elements with both edges in
the cycle, is the following:

Column 1(a12):
Column 2(a13):

...

Column 2s-1(a1,2s):
−−−−−−−
Column 2s(a23):

...

Column
(

2s

2

)
(a2s−1,2s):

−α1 −α3 | +S1 = −1
−α3 −α4 | +S3 = −1

. . . . . . | ...
−α2s−1 −α2s | +S2s−2 = −1

−α1 −α2s | +S2s−1 = −1
−− −− −− −− −− −|− −−

| +S2s = 0

0 | ...
|
| +S(

2s

2

) = 0

−2(α1 +α3 +α4 · · · · · · +α2s)| +Sβ = 2s − 1

where the Si’s the result of the multiplication of M3 and M4 by the βi’s, read by columns.
Their sum Sβ is a linear combination of βi’s with coefficients in Z. It suffices to prove that
these coefficients are all even to get a contradiction, since this will imply that the left hand
side is even while the right hand side is odd. This will be achieved by showing that there
are exactly two non-zero entries in each row of the matrix M =

[
M3 | M4

]
, and that

these entries are ±1.
Indeed, for any bj

i with ei, vj in the cycle, there are exactly two ways to add an edge
adjacent to the component with the color 1 under the condition that this edge is in the
cycle. The coordinates of d(bj

i ) on these two basis elements is ±1 and appear in M . The
other basis elements in the image of bj

i under the differential will be have at least one edge
not in the cycle so the corresponding coordinate will appear in M5.

4.2 What if we base the construction on other algebras?

In this case we know for sure that we can get torsions other than Z2.

Example 66. Let G = P3, the circuit graph with 3 vertices and 3 edges. Let A =
Z[X]/(X3). Some computation, either using definition or using the exact sequence, shows

H0(P3) ∼= Z{3} ⊕ Z3{4} ⊕ Z3{5} ⊕ Z{6}
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and
H1(P3) ∼= Z{1} ⊕ Z{2} ⊕ Z3{3}

We note that H1,3(P3) has torsion of order 3. This is quite different from the known
computations for knots, where it is conjectured no torsion of odd order can occur [S04].

More on torsion in this graph homology can be found in
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Chapter 5

Questions: What’s next

We ask a few questions that arise naturally in [HPR05]. our work.

Question 1. What do these cohomology groups mean geometrically?
The chromatic polynomial has a clear geometric interpretation. It is not clear what our
cohomology groups measure.
We note that these cohomology groups are not functions of the matroid type of the graph
since the graph made of two triangles glued at one vertex and the graph which is the disjoint
union of two triangles have the same matroid type but different cohomology groups. In fact,
they have different chromatic polynomials.

Question 2. What is the relative strength of these invariants?
� For any algebra A satisfying our assumptions, we now have several graph invariants that
are by construction ordered by strength the following way:

Relative strength of our graph invariants for A as in (40) with differential d = (m, id)
isomorphism type of cochain complexes

↓ (1)
cohomology groups

↓ (2)
Poincaré polynomial RG(t, q) Tutte polynomial + number of vertices

↘ (3) ↙ (4)
chromatic polynomial

The meaning of the arrows is the following: It is possible to recover the invariant at the
head of the arrow starting from the one at the tail of the arrow.
Indeed, for a given graph G,
(1) from the cochain complex we can derive the cohomology groups.
(2) The Poincaré polynomial is a generating function that keeps track of the free rank of
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the cohomology groups so we can derive it from the cohomology groups.
(3) Letting t = −1 in R(t, q) yields the chromatic polynomial.
(4) The Tutte T (G, x, y) and the chromatic polynomial P (G, λ) of a graph G with p(G)
vertices and k(G) connected components are related by the formula

P (G, λ) = (−1)p(G)−k(G)λk(G)T (G, 1 − λ, 0).

Given that the degree of the chromatic polynomial is p(G) and its leading coefficient is one,
knowing the Tutte polynomial and the number of vertices of a graph is enough to recover
the chromatic polynomial of a graph.
Note that knowing the Tutte polynomial and the number of connected components of a
graph is also enough to recover the chromatic polynomial of a graph so we could have chosen
that instead.

This raises a natural question: For a given algebra A, if one of these invariants is
potentially stronger than another one, is it actually stronger or are they equivalent? We
expect the result to depend on the algebra that is being used.

We have the following partial results:

Relative strength of our graph invariants for A as in (40) with differential d = (m, id)
isomorphism type of cochain complexes

↓ (1)
cohomology groups

↓ (2)
Poincaré polynomial RG(t, q) Tutte polynomial + number of vertices

↘ (3) ↙ (4)
chromatic polynomial

(1) Isomorphism classes of cochain complexes are stronger than the cohomology groups
since they can distinguish some graphs with loops whose cohomology groups are zero.
(4) All the graphs Ln, n ≥ 1, have chromatic polynomial equal to zero. However, the Tutte
polynomial of Ln is yn.

However we do not know if there are graphs distinguishable by the cohomology groups
but not by the chromatic polynomial (unless we allow generalized differentials, see example
(59)).
Such examples would raise another, more subtle, question: Given two graphs with the same
chromatic polynomial can one always find an algebra A such that the homolog groups over
A distinguish these two graphs?
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We do know that the Tutte polynomial can sometimes distinguish graphs with the same
cohomology groups (e.g. graphs with loops all have 0 cohomology groups). But we don’t
know whether there are examples in the other direction.

� If we allow a larger class of differentials, as explained in (43), we may get different
results. For instance recall that in example (59),where A = ZX, with X2 = 0, and the
differential is zero, the cochain complex and the cohomology groups contain exactly the
same information since the cohomology groups are equal to the cochain groups.

Question 3. What is the relationship with the Khovanov cohomology for knots?
We expect such a relationship given the known relationship between Jones type knot invari-
ants and Tutte type invariants for graphs. For example, Theorem (28) on pendant edges
should corresponds to the change of Khovanov cohomology for framed links under type 1
Reidemeister move. Note, however, that the Jones polynomial does not correspond to the
chromatic polynomial, instead, it corresponds to a specialization of the Tutte polynomial.
Thus some work is still needed to uncover the expected relationship.

In [HPR05], we explain some relations between the graph cohomology of a planar graph
and the Khovanov cohomology of its Tait link. The version of Khovanov cohomology used
there is the one for framed unoriented links defined by Viro in Section 6 of [V04].

Question 4. What kind of torsion can these cohomology groups contain?
We expect the result to depend on the algebra that is being used. For instance, when the
algebra is A = Z[X]/(X2) the torsion elements in our examples are all of order 2. We
would like to know whether the order of torsion elements are all 2, or perhaps powers of 2,
in general when the algebra is A = Z[X]/(X2).
We already know under which circumstances these groups have torsion when the algebra
is A = Z[X]/(X2): A loopless graph will always have a Z2 torsion provided it contains a
cycle of length at least 3.
Again, we expect the result to depend on the algebra. For instance, when the algebra is
Z[X]/(X3), we already observed in example (55) that we can get a Z3 torsion.

Some results in this direction have been obtained in [HPR05]. For instance, it is shown
in that paper that H1,m

Am
(P3) = Zm where Am is the algebra Z[X]/(Xm). This shows that

any torsion can occur.

Question 5. Can a similar construction be made for the Tutte polynomial?
The Tutte polynomial can be expressed as a state sum so we have something to start
from but the fact that it is a two-variable polynomial makes things more difficult. The
standard techniques of categorification work for one-variable polynomials. The categori-
fications of two variable polynomials that have been done so far, i.e. the categorification
of the HOMFLY polynomial [KR04] and of the Dichromatic and the Tutte polynomial for
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graphs [St05] are indeed categorifications of a sequence of one-variable specializations of the
polynomial that are enough to recover the original polynomial. So there is still the need
for a categorification of the Tutte polynomial as a two variable polynomial.
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Chapter 6

Appendices: Some computational

examples

6.1 Computation of the cohomology groups of the graph P3

(the triangle) via the exact sequence when A = Z[X]/(X2)

Let G = P3. We label the edges the following ways
1 3 = e

2
, which respects the rule that

when we use the exact sequence the edge e has to be the last one in the ordering.
The exact sequence with respect to (G, e) is:
0 → H0( ) → H0( )

γ∗
→ H0( ) → H1( ) → H1( ) → · · ·

� Step 1: Reduce the problem.

� Substitute in the exact sequence the cohomology groups that are known.The cohomol-
ogy groups are known for G − e and G/e: Indeed, G − e = is a tree with 2 edges and
since the cohomology groups don’t see multiple edges, G/e = has the same cohomology
groups as , which is also a tree. In both cases, the cohomology groups can be obtained
from the the cohomology groups of the graph made of an isolated vertex by raising the
degrees by one for each edge in the tree as explained in Theorem (28), the pendant edge
theorem. One can also use directly the result provided in Example (33), the example of a
tree with n edges.

� Split the exact sequence by degree. Since all the groups in the exact sequence are
graded and all the maps in the exact sequence are degree preserving, we can split the exact
sequence by degree. This is what the row labels “j = · · · ” mean. For instance, the row
“j = 2” deals with the elements of degree 2. In this same row, γ∗

02 is the restriction of γ∗
0

to the elements of degree 2.
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The exact sequence becomes:
0 → H0( ) → H0( )

γ∗
→ H0( ) → H1( ) → H1( ) → · · ·

G G − e G/e G G − e

j = 0 0 → H00(G) → 0 → 0 → H10(G) → 0 → · · ·
j = 1 0 → H01(G) → 0 → Z → H11(G) → 0 → · · ·
j = 2 0 → H02(G) → Z

γ∗
02→ Z → H12(G) → 0 → · · ·

j = 3 0 → H03(G) → Z → 0 → H13(G) → 0 → · · ·

� Use the vanishing theorem and the thickness theorem to determine which groups we
need to compute.

Note that a reader not acquainted yet with these theorem may safely skip this paragraph
since the result we get here can also be obtained using Step 2 of the method.

� Theorem (36), the vanishing theorem, says that for i 
= 0, H i(G) = 0 unless maybe if
i � p − 2. This shows that we only have to take care of H0(G) and H1(G).

� Theorem (37), the thickness theorem, says that if G is a connected graph with p

vertices, then H i,j(G) = 0 unless maybe if p − 1 � i + j � p. In our case, it means that
H i,j(G) = 0 unless maybe if 2 � i + j � 3.

We get that H00(G), H01(G), H10(G) and H13(G) are trivial.

� Step 2: Some cohomology groups are now obvious
We now use the two following basic properties of exact sequences to derive some coho-

mology groups.
Rule 1: If 0 → G → 0 is exact then G ∼= 0.
Rule 2: If 0 → G1 → G2 → 0 is exact then G1

∼= G2.

By Rule 2, we get that H03(G) ∼= H11(G) ∼= Z.

In this specific example, the vanishing and the thickness theorem were not needed since
Rule 1 also proves that H00(G), H01(G), H10(G) and H13(G) are trivial.

� Step 3: Remaining cohomology groups
The only cohomology groups not determined so far are H02(G) and H12(G).
If we restrict the exact sequence to the elements of degree 2, we have:

0 → H02( )
β∗
02→ H02( )

γ∗
02→ H02( )

α∗
02→ H12( )

β∗
12→ H12( ) → · · ·

We want to determine γ∗
02
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H0( )
γ∗
02−→ H0( )

�

Z

�

< (

(

(

(

(

(

+ -
X 1

X

X XX

X1

1
>

︸ ︷︷ ︸
b

�

Z

�

< X X >︸ ︷︷ ︸
f

Generators for these groups can be obtained either via the pendant edge algorithm
(Proposition (30)), or using the description of basis elements of cohomology groups for
trees in section (2.6) or using the method described in the proof of Theorem (38), the
0-cohomology theorem.

Using the definition of γ∗ described in remark(21), we get γ∗
02(b) = 2f.

This implies that γ∗
02 is injective so kerγ∗

02 = 0 and that Imγ∗
02 =< 2f >. We combine

these facts with the information of what the exact sequence is:

0 → H02(G)
β∗
02→< e >

γ∗
02→< f >

α∗
02→ H12(G) → 0

� β∗
02 is injective so H02(G) ∼= Imβ∗

02 = kerγ∗
02 = 0

� α∗
02 is surjective so by the first isomorphism theorem,

H12(G) = Imα∗
02

∼=< f > /kerα∗
02 =< f > /Imγ∗

02 =< f > / < 2f >∼= Z2.

Summary : H0

Z[X]/(X2)
( ) = Z{3}, as predicted by the 0-cohomology theorem.

H1

Z[X]/(X2)
( ) = Z{1} ⊕ Z2{2},

and H i

Z[X]/(X2)
( ) = 0 if i ≥ 2.

6.2 Classification of rings of the form A = Z1⊕Zx with 1 and

x of degree 0

Here, we would like to classify all commutative rings with identity whose additive group is
free abelian group of rank two. Let R be such a ring. Its additive group (R, +) is generated
by 1 and x. We have 1∗1 = 1, 1∗x = x∗1 = x, and x∗x = a1+ bx where a, b are arbitrary
integers. Obviously the ring structure of R is completely determined by (a, b). Let R′ be
another ring whose additive group is generated by 1′ and x′ with x′ ∗ x′ = a′1′ + b′x′. We
have

Proposition 67. The two rings are isomorphic if and only if b2 +4a = b′2 +4a′ and b ≡ b′

(mod 2)). In other words, the isomorphism type of R is completely determined by (b2 + 4a,

b (mod 2)) ∈ (Z, Z2).
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Proof. Suppose R ∼= R′ as modules, and let f : R → R′ be an isomorphism. Then
f(1) = 1′, f(x) = k1′ + lx′ where k, l are integers. Since {f(1), f(x)} spans the R′ as an
abelian group, we have l = ±1.

Since f preserves the multiplication, f(x2) = (k1′ + lx′)2 = k2 + 2klx′ + l2x′2 = k2 +
2klx′ + l2(a′1′ + b′x′) = (k2 + l2a′)1′ +(2kl+ l2b′)x′. We also have f(a1+ bx) = a1′ + b(k1′ +
lx′) = (a + kb)1′ + lbx′. Since x2 = a1 + bx, we have{

k2 + l2a′ = a + kb (1)
2kl + l2b′ = lb (2)

The above two equations are equivalent to the following, where (3) is obtained by taking
(1)−k

l ∗(2), and (4) is 1
l ∗(2): {

l2a′ − klb′ − k2 = a (3)
2k + lb′ = b (4)

Take 4∗(3)+(4)2, we obtain:

l2(b′2 + 4a′) = b2 + 4a

This is equivalent to b′2 + 4a′ = b2 + 4a since l = ±1.
The relation b ≡ b′ (mod 2) follows from equation (4) by taking mod 2 in both sides.
Conversely, if (a, b) and (a′, b′) satisfy the two relations, we let l = 1, and k = 1

2(b− b′).
A straight forward computation shows that equations (1) and (2) hold. This implies that
the map f : R → R′ defined by f(1) = 1′, f(x) = k1′ + x′ is a ring isomorphism.

6.3 A few computational results

In the array that keeps track of the cohomology groups, the numbers without brackets
indicate the number of copies of Z while the numbers with brackets indicate the number of
copies of Z2.

For instance, in the case of the triangle (see figure (6.1) below), the first column means
H0(P3) = Z{3} (= H03(P3), elements of degree 3). The second column means H11(P3) =
Z{1} (elements of degree 1 in H1) and H12(P3) = Z2{2} (elements of degree 2 in H1) i.e.
H1(P3) = Z{1} ⊕ Z2{2}

The names G40 and G42 of the graphs in the Figure (6.5) follow the classification in
[RW99].
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Figure 6.1: P3 summary when the algebra is Z[X]/(X2)
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Figure 6.2: P3 with a pendant edge, summary when the algebra is Z[X]/(X2)
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Figure 6.3: P6 summary when the algebra is Z[X]/(X2)
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Figure 6.4: Two triangles and an isolated vertex, summary when the algebra is Z[X]/(X2)
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Figure 6.5: summary for G40 and G42 when the algebra is Z[X]/(X2)
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